
Aura: An IoT based Cloud Infrastructure for
Localized Mobile Computation Outsourcing

Ragib Hasan, Md. Mahmud Hossain, and Rasib Khan
{ragib, mahmud, rasib}@cis.uab.edu

Department of Computer and Information Sciences
University of Alabama at Birmingham, AL 35294, USA

Abstract—Many applications require localized computation in
order to ensure better performance, security, and lower costs. In
recent years, the emergence of Internet-of-Things (IoT) devices
has caused a paradigm shift in computing and communication.
IoT devices are making our physical environment and infrastruc-
tures smarter, bringing pervasive computing to the mainstream.
With billions of such devices slated to be deployed in the next
five years, we have the opportunity to utilize these devices in
converting our physical environment into interactive, smart, and
intelligent computing infrastructures. In this paper, we present
Aura – a highly localized IoT based cloud computing model. Aura
allows clients to create ad hoc clouds using the IoT and other
computing devices in the nearby physical environment, while
providing the flexibility of cloud computing. Aura provides local-
ized computation capability from untapped computing resources.
Computations done on Aura are highly flexible, giving clients
full control to start, stop, migrate, and restart computations in
nearby devices as the clients move between different physical
locations. To demonstrate the feasibility of Aura, we have ported
a lightweight version of MapReduce to run on IoT devices, and
evaluated its performance.

Keywords—Mobile cloud, Internet of things, MapReduce

I. INTRODUCTION

The emergence of cloud computing has created a ma-
jor shift in computing. Since 2005, the technology behind
clouds has advanced greatly to provide low-cost but highly
scalable distributed computing services. However, cloud service
providers use large data centers that are geographically distant
from their clients. Amazon Web Services, for example, has its
massive cloud data centers located in 11 regions throughout
the world [1]. A client therefore must send and receive its data
over long distances through the public Internet when using
such clouds. For highly interactive and time critical services,
especially for mobile clients, such longer latencies can cause
slow performance, security issues, and application availability
problems. To provide optimal performance and minimal data
movement between the client and the cloud, it would be better
if the cloud is physically close to the client and moves as the
client changes her location over time.

As an example, let us consider a cloud-enabled mobile
application running on a smart phone. Due to the lower
computation capability of mobile phone processors, such an
application would ideally offload all the computation to the
cloud, and provide only the visual display of the application
on the phone. However, traditional clouds located hundreds or
thousands of miles away from the mobile phone client may
have large latencies, resulting in sluggish performance. Also,
the application might deal with sensitive information which the
client may not want to send over the public Internet to the cloud.
An ideal solution can be achieved if the cloud is physically

near the client’s mobile phone so that all communications
occur over one or two network hops from the client, and the
data never has to traverse over the public Internet. On the
other hand, building cloud infrastructures is very expensive,
requiring hundreds of millions of dollars to set up and operate
cloud data centers, making it impossible and economically
infeasible to have data centers located near clients. For such
localized computing facilities, we need a lightweight system
for outsourced computation that can be incorporated into each
building or physical infrastructure, making it available at a close
distance from clients. To achieve this, in this paper, we present
Aura – a system for outsourced computation on lightweight ad
hoc clouds built using Internet of Things (IoT) devices.

As we enter the age of the Internet of Things (IoT),
many devices in our everyday environment have gained signif-
icant computing capabilities as well as network connectivity.
Smart thermostats, intelligent cars, programmable and Internet-
connected appliances and LED light bulbs – all of these
devices contain powerful processors and the ability to perform
computations [2]. According to Business Intelligence, there
were 1.9 Billion smart IoT devices in deployment as of
December 2013, a number that will rise to 9 Billion by 2018
[3]. Another estimate from Gartner predicts that by 2020, the
number of smart IoT devices will rise to 26 Billion with the
market exceeding $300 billion [4]. IoT devices will outnumber
smartphones, laptops, tablets, and traditional computers (7.3
Billion) by four times [3]. The rise in the number and usage
of IoT devices will mean that in any building, there will likely
be hundreds, if not thousands, of such devices with Internet
connectivity and computing capability.

While most IoT devices have a dedicated purpose (such
as environmental control with a smart thermostat), they have
sophisticated processors and available memory that can be
utilized for general-purpose computations. At present, these
processors are not utilized fully, and are lying idle most of
the time. The rise in the number of IoT devices capable of
computing gives us an opportunity to make our buildings
smarter and capable of running a computing in the infrastructure.
That is, by leveraging the IoT devices in creating a computing
fabric, we can make our buildings and infrastructures smart and
make them ”think” in the practical sense. We argue that, by
combining the computational capabilities of such IoT devices,
we can build a small-scale localized cloud.

Researchers have looked at distributed computing from
various angles, yet the focus has remained on using desktops
or unused servers in a given institution (as in Condor [5]) or
all over the world (as done in SETI@Home, Folding@Home
[6]). However, in all such projects, the computation and data
have to traverse over multiple hops between the client and the

servers, which causes the latency and data security issues we
mentioned earlier. An IoT based cloud can solve the issue by
providing computation very close to the client, while providing
the flexibility of the cloud computing model.

In this paper, we present Aura – a system for truly localized
computation outsourcing using an IoT based lightweight cloud.
Aura can be used to offload computations from a user’s mobile
device to the large number of IoT devices present in a building
environment, allowing fast processing through the redundancy
and scalability. The data and computations always remain close
to the user. As the mobile client moves between physical
locations, the data and computations are transparently migrated
to the new computing environment where the computation
can be resumed on the intermediate results, thus keeping the
computation in proximity of the user. Aura also provides a
tiered incentive model using which users can negotiate with the
IoT devices to reach an optimal contract via micro payments
to the devices for the work done. This incentive model ensures
that the device owners have an interest to devote the unused
cycles on their IoT devices for outsourced computations.
Contributions. The contributions of this paper are as follows:

1) We present Aura – a highly localized and mobile ad
hoc cloud computing infrastructure using low-power IoT
devices present in the building environment.

2) We provide an incentive and contract mechanism which
allows building and operating such a system in an
economically feasible manner.

3) We implemented Aura on the popular Contiki operating
system for IoT devices [7], and ported a lightweight
MapReduce prototype [8] to the IoT devices.

4) We demonstrate the feasibility and performance analysis
of running such MapReduce operations on IoT devices.

Organization. The rest of the paper is organized as follows:
Section II provides background information on IoT and cloud
computing and the motivation behind IoT based localized
clouds. Section III looks into the challenges in building such a
system. Section IV provides a discussion of related research
work. We present Aura and discuss its architecture in detail
in Section V. We then discuss the implementation details and
evaluation results from Aura in Section VI. We discuss the
overall system and comment on the security and privacy aspects
in Section VII and conclude in Section VIII.

II. BACKGROUND AND MOTIVATION

A. Background
Internet-of-Things. Internet-of-Things refer to uniquely iden-
tifiable and Internet connected devices with computing and
sensing and/or actuation capabilities [2]. IoT devices include
smart thermostats, light bulbs, biochips, automobiles, sensors,
automation systems, etc. The IoT devices can communicate
over Wi-Fi (802.11.x), 6LoWPan (802.14.15) or through wired
connections. Current application of IoT devices includes en-
vironmental monitoring, infrastructure management, industrial
actuation applications, building and home automation, and
medical/healthcare systems. The small scale and embedded
nature of IoT devices mean that in any urban environment,
there will be thousands of such devices, with current estimates
of 1000 to 5000 trackable devices around a given user [2]. Such
devices are and will be characterized respectively by their small
sizes, low-power usage, limited range, and sophisticated sensing

and computing capabilities. Together, the IoT devices and
traditional computing systems will form massive, hierarchical
distributed systems with complex interactions and information
exchanges. An example of a popular IoT device is Nest, a smart
and Internet-capable thermostat developed by Google, which
contains an ARM Cortex A8 CPU (1 GHz) [9]. This example
IoT device shows the sophisticated computing capability
available to current IoT devices, which we propose to leverage
in building our Pico clouds. A Nest device could support a
significant value chain above and beyond its current use cases
given the extra capabilities inherent in the system.

Cloud Computing. It refers to a computing model with infinite
and elastic resource scalability, on-demand provisioning, and
pay-as-you-go payment model [10]. Traditional cloud systems
require the creation of large data centers with thousands
of servers. Clouds and utility computing models have been
extremely successful in recent years, enabling inexpensive yet
large scale computing to solve complex problems, and allowing
businesses to enjoy the economies of scale. Researchers have
also developed highly efficient distributed data processing
programming models for cloud computing. A very popular data
processing model is MapReduce [8], introduced by Google and
widely used in its Hadoop implementation in clouds.

B. Motivation
An IoT based localized cloud infrastructure has several

advantages over traditional clouds. As discussed in Section I,
such clouds allow highly localized computing environments
very near to the clients, while providing the flexibility and scala-
bility of clouds. Next, building such a computing infrastructure
allows the utilization of the unused computing capability of
the IoT devices which is otherwise wasted. A localized cloud
also provides computing services with access to rich contextual
information. For example, the cloud can serve as a backbone
to the location aware services providing access to information
relevant to that specific location. It augments our buildings and
infrastructures with a smart and intelligent computing fabric. On
the other hand, a localized IoT cloud allows users to seamlessly
integrate with new environments and have their information
experiences follow them efficiently. Finally, such a cloud can be
deployed easily in existing IoT devices with minimal additional
expenses.

In our work, we want to create new cloud architectures
using the low-powered IoT devices as the backend servers. In
particular, IoT clouds may be the clouds of interaction, work
offload, user experience, and collaboration, whereas data center
clouds will continue to do the large scale big data analytics,
HPC, and multi-tier business applications.

III. ISSUES AND CHALLENGES

In this section, we discuss various issues and challenges in
building an IoT based cloud infrastructures.
IoT device operation. Each IoT device has its own core
functionality. The formation of and IoT cloud should not
severely impact the operation of the device. On the other hand,
the core function of the IoT device in turn should not debilitate
or jeopardize the computations outsourced to that IoT device.
Power. The extra computations and data transfers due to
participation in an IoT cloud will cause additional power con-
sumption. Therefore, we need smart algorithms and schedulers

that can intelligently run IoT cloud computations on the devices
to minimize power usage. The cloud backend operations such
as MapReduce operations should be modified in order to run
efficiently on the low-powered IoT devices (by minimizing and
aggregating data transfer operations).
Security. The security and privacy of users, computations, and
data are important issues. As the users are using the computation
facilities in various buildings they visit, the devices used in
the IoT cloud may not be fully trustworthy. Therefore, the
system should provide facilities for trustworthy computations
and guarantees for confidentiality, integrity, and availability of
the data. On the other hand, allowing a cloud service process
to be run on the IoT device should not endanger the operation
of the IoT device or the data generated on or processed by the
device. Finally, the data and computation migration between
the IoT based computing facilities present in various locations
should be secure and trustworthy.
Incentive and Economics. Allowing IoT devices to be used
as part of a cloud costs the device owner money. The owners
will need a strong incentive to participate in such a cloud. On
the other hand, mobile clients also need to determine whether
running the computation in the nearby IoT based cloud will
be feasible in terms of costs, as opposed to running it in the
device itself or sending it to a conventional cloud.
Robustness. There can be significant churn in the number and
performance of IoT devices participating in the cloud, which
can drop off, or preempt the cloud compute task in favor of
the device’s own operations. The high churn rate will require
a robust and failure-resilient redesign of cloud computing.
IoT Heterogeneity and Interoperability. The IoT devices use
a variety of operating systems. Also, the capability and features
available to each IoT device is different, ranging from devices
with powerful processors to those with very low capacity
processors. Therefore, providing sustainable performance from
an IoT based cloud will be a challenge.

IV. RELATED WORK

Researchers have explored distributed computation out-
sourcing in various directions. Beberg et al. discussed Fold-
ing@Home which uses highly distributed computation to
determine protein structures [6]. The Condor system is a
large scale distributed computing platform which runs over
a heterogeneous set of servers [5]. mClouds is a mobile device
based ad hoc cloud where mobile phones can form a cloud
computing platform [11]. In [12], Hoang et al. described a
mobile cloud architecture which uses sensors and mobile
cloud nodes to collect and manage data from the environment.
However, all of these proposed systems do not necessarily
provide localized computation, do not include any incentive
or bidding, and do not provide any task completion estimates
or guarantees through contractual basis. In [13], Noor et al.
presented CellCloud, a mobile cloud built using mobile phones
where the mobile base station acts as the controlling node.
They discuss a bidding scheme for negotiating micro payments
made by task owners to the participating mobile phones. We
can build on this model in order to create a feasible model of
incentives for the IoT based cloud.

Researchers have also explored the problem of mobile
computation offloading [14], [15], [16], [17]. Mobile cloud
architecture, application model, time-constrained or real time

Controller(

IoT(
Device(

IoT(
Device(

IoT(
Device(

IoT(
Device(

IoT(Core(
Func1ons(

Cloud(
Node(

Aura(Sandbox(

IoT(Communica1on(Layer(

Mobile(
Cloud(user(

IoT(Device(Internal(
Modules(

1.(User(sends(
task(info(to(
controller(

2.(Controller(
gets(bids(from(
par1cipa1ng(IoT(
devices(and(
distributes(task(

3.(IoT(devices(run(the(task(
in(a(cloud(node(inside(a(
sandbox,(and(returns(
results(to(the(controller(

4.(Controller(
aggregates(
results(and(
sends(back(
to(the(user(

Fig. 1: Conceptual overview of the Aura model

task offloading scheduler and algorithm are proposed in [18],
[19], [20], [21], [22]. Our work is complementary to the
research on mobile computation offloading and can leverage
the offloading or scheduling scheme on the mobile devices to
determine optimal strategies for offloading tasks to IoT clouds.

V. AURA ARCHITECTURE

Aura is built on top of a large set of IoT device workers.
We assume that the IoT devices are located at fixed locations
in a building or other physical infrastructure and have local
network or Internet connectivity. The IoT devices run a special
sandboxed process inside which the cloud functions are run in
isolation from the other activities. The conceptual operation of
Aura is shown in Fig. 1 and later explained further in Fig. 2.

A. Components

The Aura architecture has three major components. a) Mo-
bile Agent(s), b) Controller(s), and c) IoT devices. Fig. 2
presents an overview of Aura’s system model. Next, we describe
the properties and functions of these components:

Mobile agents. The Mobile agents (M-Agent) are personal
mobile devices: smart phone, laptop, etc. M-Agents are running
applications that require offloading to the cloud. When a user
enters a building, the M-Agent advertises the job along with a
job description: time-to-finish job, outsourcing price, etc.

IoT devices. The IoT devices (integral part of Aura) perform
the actual outsourced computation. Interested devices advertise
their own device specifications, requirements and capabilities:
computation speed, storage/ memory status, energy level,
network and security protocols, etc.

Controller(s). A Controller (mobile-computation-broker) pro-
vides communicational and computational abstraction between
IoT devices and the M-Agent, such that M-Agent does not
have to deal with worker IoT devices directly. A controller
receives job announcements, initiates discussion about job’s
pricing with interested IoT devices. If the proposed payment
seem economically attractive, only then it accepts the job. A
controller’s roles and responsibilities consist of task break down
(sub-tasks) and distribution , control command issuance (start,
pause, resume, stop), and sub-tasks’ progress monitoring.

B. Operational Model

Upon activation of an IoT device in a building, the device
owner sets the configuration based on which the device

Mobile
Agent 1

Mobile
Agent L

Controller 1

Controller 2

Controller M

IoT
N-1

IoT
N

Controller M-1

IoT
N-2

IoT
2

IoT
3

IoT
1

Fig. 2: Architecture of an Aura based system

advertises its availability for IoT cloud participation. Similarly,
the controller node owner also sets up the configuration.

When a user enters a building, the M-Agent running on
the user’s mobile device advertises the jobs and initiates
a negotiation round with the controller. Upon reaching an
agreement, the computation code and the data are sent to the
controller for distribution to the IoT worker nodes. When the
computation is done, the resulting data is returned to the M-
Agent via the controller. If at any point, the M-Agent wants to
suspend operation, it can send a message to the controller. At
that time, the computation is suspended and intermediate results
are sent back to the M-Agent, which can take this computation
state to a new location and resume the job at the Aura
infrastructure at that location. Alternatively, the computation
can be resumed at the mobile device natively, or sent to a
conventional cloud. Next, we describe the advertisement and
discovery protocol in detail.

Advertisement and Discovery Protocol. Devices (controller,
M-Agents and IoT devices) join and leave Aura network at any
time. After joining a network, it announces its presence which
we denote as entrance-advertisement. Advertisement message
contains device or job specific information such as job or device
status , requirements, configuration, etc. When a device leaves
the network, it should announce its departure through exit-
advertisement message. Upon receiving the exit-advertisement,
other components will be aware that this device is no more
connected with the network. A device might also send discovery
messages in search for other devices. For example, an IoT
device discovers a controller by sending discovery messages
in the Aura network. We use UPnP message standard for
advertisement and device discovery, where messages will be
sent to the multicast address 239.255.255.250 on port 1900 via
the UDP protocol [23].

An advertisement message must starts with NOTIFY field.
The NTS field in the advertisement is used to distinguish
between entry (NTS:ssdp:alive) and exit (NTS:ssdp:byebye)
messages. Advertisement message ownership is determined by
the NT field. if an advertisement is made by an IoT device,
then NT will be set to ‘IoT Device’ – the same is true for
controller and M-Agent. There might have additional field in
the advertisement for device specification (cpu speed, memory,
per hour charge, etc.) and job description (job title, completion
time, interrupted computation, etc.). A discovery message must
start with M-Search. The search-target is determined by ST
field. For instance, if ST is set to ‘Controller’, then someone
(M-Agent/ IoT device) is looking for controllers. We illustrate
the message format and its attributes in Fig.s 3, 4, and 5.

Let us consider a scenario for job advertisement. When

NOTIFY * HTTP/1.1
HOST: 239.255.255.250:1900
NT: IoT Device
NTS: ssdp:alive
Pricing: $x per Hour
Time to Live: 12 Hour
CPU Speed: 700 MHz
RAM: 400 MB
Flash Drive: 1GB

NOTIFY * HTTP/1.1
HOST: 239.255.255.250:1900
NT: IoT Device
NTS: ssdp:byebye

M-SEARCH * HTTP/1.1
HOST: 239.255.255.250:1900
MAN: ssdp:discover
ST: Controller

Entrance Advertisement Exit Advertisement Controller Discovery

Fig. 3: Advertisement and discovery message for IoT Device

NOTIFY * HTTP/1.1
HOST: 239.255.255.250:1900
NT: Controller
NTS: ssdp:alive

NOTIFY * HTTP/1.1
HOST: 239.255.255.250:1900
NT: Controller
NTS: ssdp:byebye

M-SEARCH * HTTP/1.1
HOST: 239.255.255.250:1900
MAN: ssdp:discover
ST: IoT Device

Entrance Advertisement Exit Advertisement IoT Device Discovery

Fig. 4: Advertisement and discovery message for Controller

NOTIFY * HTTP/1.1
HOST: 239.255.255.250:1900
NT: Mobile Agent
NTS: ssdp:alive
Job Title: Task-1
Completion Time: 20 Min
Interrupted Computation: Y

NOTIFY * HTTP/1.1
HOST: 239.255.255.250:1900
NT: Mobile Agent
NTS: ssdp:byebye

M-SEARCH * HTTP/1.1
HOST: 239.255.255.250:1900
MAN: ssdp:discover
ST: Controller

Entrance Advertisement Exit Advertisement Controller Discovery

Fig. 5: Advertisement and discovery message for M-Agent
arriving at a location with Aura, an M-Agent sends a discovery
message in the network to look for a suitable controller. It
cannot outsource its job until it finds a controller. It also
advertises its identity and potential job description which
includes additional fields such as ‘Job Title’, ‘Job Completion
Time’, etc. ‘Interrupted Computation’ field is set to Y, denoting
that agent might request the controller to issue stop command
in the middle of computation, and also the controller needs
to send back the intermediate result and computation states to
the M-Agent. The M-Agent might resume computation from
the last saved state of computation in some later time, in some
different IoT network with an Aura service (see Fig. 5).

Offloading and State/Result Preservation. We now present
the information flow among the M-Agent, controller, and IoT
Devices in a building (say building-1). Let us consider a
scenario, where an Aura network is comprised of one M-Agent,
one controller, and several IoT devices under that controller.
Here, the sequence of events for computation outsourcing with
state preservation happens in the following steps:

1) A new IoT device joins in the network, and multicasts
its advertisement. 2) The Controller receives and parses the
advertisement message to learn about the new IoT device
(computational capability, device-live-time, pricing, etc.). 3) If
the controller feels interested, then it sends an acknowledgement
to the IoT device, otherwise it simply discards the message.
4) Upon receiving the acknowledgement, the IoT device is
connected with the controller. 5) After sometime, a new M-
Agent, which has a job to be outsourced, enters building-1.
It joins the network and makes a job advertisement. 6) The
controller receives and parses the advertisement to get job
details (job description, job completion duration, etc.). 7) The
controller then consults with its IoT devices to decide whether
to take the job or not. 8) If it decides to accept, then it states
a price for that job. 9) If the M-Agent agrees with the price
quotation, then it submits the job to the controller. 10) The
controller splits the job in several sub-tasks, and sends those
to different IoT nodes according to their capabilities and price
for computation.

An exception might arise while IoT devices are performing
the sub-tasks. The M-Agent might wish to stop the job before

Android Mobile
Agent

Contiki OS

IoT Device
(Reducer)

Java Controller

Ubuntu 12.04 LTS

C
oo

ja

Contiki OS

IoT Device
(Reducer)

Contiki OS

IoT Device
(Reducer)

Contiki OS

IoT Device
(Mapper)

Contiki OS

IoT Device
(Mapper)

Contiki OS

IoT Device
(Mapper)

Fig. 6: Experimental environment

Mobile
Agent

Key: word1 word2 word3 …
Text Length: length of file/ text
Text: text to be searched for words

Java
Controller

Java
Controller

Key: word1 word2
word1: reducer1 IP …
Text Length: length of segmented text
Text: text to be searched for words

Mapper
(IoT)

Mapper
Key: word1 word2
word1: number of occurrence … Reducer

(IoT)

Reducer
Key: word1 word2 word3
word1: total number of occurrence …

Java
Controller

1

2

3

4

Fig. 7: Inter component message flow
it is finished, as the user moves from building-1 to building-2.
In that case, it requests the controller to stop computations,
and to send the intermediate result and computation state. The
controller propagates the stop command to the participating
IoT node, and asks them to send the intermediate results and
computation states immediately. The IoT nodes do so and send
the intermediate results and computation states to the controller,
and ultimately to the M-Agent. Now, the M-Agent enters into
building-2 and connects to its network. When it resumes the
task, it is starting from where it left off in building-1.

Task Completion Failure Penalty. When an IoT device fails
to complete a task within the given time frame, the M-Agent
might make under payment, and/or assign a bad reputation to
the controller for its unsatisfactory performance. The controller
might do the same to the failing IoT device. As a result, the
chance of getting further tasks, for both the controller and the
IoT device, will be diminished due to bad reputation.

VI. IMPLEMENTATION AND EVALUATION

For the experimental purpose, we have created a proof of
concept implementation of Aura. Our conceptual Aura system
includes an Android application as the M-Agent, a desktop
based Java application as the controller, and several virtual IoT
devices running Contiki OS – a popular operating system for
IoT devices [7]. To demonstrate the feasibility of running cloud
based data flow computations on Aura, we ported MapReduce
[8] to the Contiki platform and implemented a lightweight
Contiki compliant MapReduce framework for IoT nodes. We
deployed the mapper and reducer binaries to Tmote-SKY [24]
IoT devices, which were simulated on Cooja [25] (see Fig. 6).
Finally, we evaluated our implementation with the canonical
MapReduce example problem: Word count.

In our experiments, the Android M-Agent posts a job (word-
count) to the controller. The M-Agent running on the phone
transfers a file to the controller application along with the set
of words it wishes to be counted from the file’s content. Upon
receiving the file and set of words, the controller application
splits the file and the words into several segments and distributes

Mapper/
Reducer

Interrupt Result: word1 word2 word3
word1: number of occurrence …
Processed word: total word count.

3

Controller

Controller
Interrupt
Task ID: task id to interrupted Mapper/

Reducer

2

Agent
Interrupt
Task ID: task id to interrupted Controller

1

Fig. 8: Message format for interrupted task

0

5000

10000

15000

20000

25000

30000

35000

40000

1KB 2KB 3KB 4KB 5KB

Ti
m

e
(m

s)

File Size

M=2, R=1

M=3, R=2

M=4, R=2

M=5, R=3

M=Mapper
R=Reducer

Fig. 9: Task completion time vs task size with variable workers
those to some mappers (IoT nodes). Mappers count the words,
and send the total number of individual occurrences of the
words to the reducer IoT nodes. The reducers do the final
summation and send the result back to the Controller, which
then relays the result to the android M-Agent. We use our own
message format for the communication between android M-
Agent and controller, and between controller and IoT devices:
mappers and reducers (see Fig. 7). Our implementation also
covers the features for computational-state and intermediate-
result preservation for computation-stop request in the middle
of an ongoing computation (see Fig. 8).

We evaluated the task completion time for various mapper
and reducer configurations and file sizes, the results of which
are presented in Fig. 9. Our experiment shows that it is quite
challenging to find an optimal number of mappers and reducers
to finish a job within the given time frame by the M-Agent.
Usually, it might be thought that the involvement of more
mappers and reducers will help to finish the job before the
deadline, as execution of sub tasks will go in parallel. But in
practice, things might be getting worse. We see from Fig. 9
that when the file size is 1 KB then only two mapper and one
reducer did the job in the quickest time, while five mappers
and three reducers gave the worst result. From the figure, we
can infer that three mapper and two reducers give the optimal
solution. Therefore, when a controller breaks down a task in to
sub-tasks, it needs to consider the participant number for the
whole task, so that the overall task completion is not affected
negatively.

VII. DISCUSSION

Security perspectives. IoT devices are still dependent on
manufacturer specific black-box security [26]. Unfortunately,
there are still many unresolved issues regarding the adoption
of cloud-based models for services and computations using IoT
devices [27], [26]. The distinct multi-device environment of
Aura complicates the situation more than traditional service-
oriented frameworks and are vulnerable to both insider and
outside threats [28], active and passive attacks [29].

Auditing is important for security critical jobs [30]. Given
the volatile nature of the framework, we realize that the devices

will have limited monitoring and auditing facilities. We may
adopt external process documentation and provenance recording
solutions proposed in other similar distributed architectures
[31]. A solution to privacy of computation may be obtained
using homomorphic security schemes [32], [33], [34]. Moreover,
Device-to-device security in dynamic environments to protect
individual communication channels can also be leveraged using
host identity protocol [35], [36]. However, IoT devices are still
limited in hardware resources, which may restrict the possibility
of integration of strong security technologies.

Applicability of Host Identity Protocol. The proposed frame-
work is based on IoT devices, which come along with
their inherent properties of unstable connectivity and high
mobility. Additionally, the clients are spacio-temporally co-
located mobile devices with preferentially chosen controllers
based on the proximity. The evolving nature of the network
communication suits the dynamic behavioural support for HIP
– a meta-layer protocol working in between the IP namespace
and the application layer [35], [36]. HIP introduces a separation
of the port-IP binding for the application layer using a Host
Identity (HI) namespace. Therefore, Roaming mobile devices
can maintain the connection with the controllers till when
the process states are saved and transferred safely in case of
incomplete tasks. Additionally, devices can perform mutual
verification prior to beginning a service session [35], [36].

VIII. CONCLUSION

Internet of Things devices are becoming ubiquitous, and in
the coming years, there will be thousands of such devices in our
physical infrastructure. While the devices are typically equipped
with low-end processors, the sheer number of such devices
predicted to be present in any building allows us to successfully
run a computation in a loosely formed cloud built using the
IoT devices. In this paper, we presented Aura – a platform that
achieves the goals of localized and highly scalable computation.
Our proof of concept implementation of Aura on the Contiki
platform as well as the simplified MapReduce port shows the
feasibility of such a model. In future work, we want to extend
the model and explore techniques for ensuring the security and
privacy of the computation as well as migration. In addition,
we will develop secure sandboxing techniques and scheduling
algorithms which ensure that the core functionality of the IoT
devices will not be affected when the devices participate in
an IoT cloud. We will also test Aura on a large scale and
heterogeneous IoT testbed.

Acknowledgment. This research was supported by a Google
Faculty Research Award, the Department of Homeland Secu-
rity Grant FA8750-12-2-0254, and by the National Science
Foundation CAREER Award CNS-1351038.

REFERENCES

[1] Amazon Inc., “Global infrastructure,” Online at http://aws.amazon.com/
about-aws/global-infrastructure/.

[2] A. Iera, C. Floerkemeier et al., “The internet of things,” IEEE Wireless
Communications, December 2010.

[3] Business Intelligence, “Here comes the internet of things,” Online at
https://intelligence.businessinsider.com/the-internet-of-things-2013-10.

[4] Gartner Inc., “Forecast: The internet of things, worldwide,” Online at
http://www.gartner.com/newsroom/id/2636073, 2013.

[5] D. Thain, T. Tannenbaum et al., “Distributed computing in practice:
The condor experience,” Concurrency and Computation: Practice and
Experience, 2005.

[6] A. Beberg, D. Ensign et al., “Folding@home: Lessons from eight years
of volunteer distributed computing,” in Proc. of IPDPS. IEEE, 2009.

[7] “Contiki OS,” http://www.contiki-os.org/start.html.
[8] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on

large clusters,” Proc. of CACM, 2008.
[9] S. Sheffer, “Nest thermostat teardown reveals ARM Cortex A8 CPU,

ZigBee support,” The Verge, http://j.mp/1zIZefj, Dec 2011.
[10] NIST, “The nist definition of cloud computing,” Online at http://csrc.

nist.gov/publications/nistpubs/800-145/SP800-145.pdf, September ’11.
[11] E. Miluzzo, R. Cáceres et al., “Vision: mclouds-computing on clouds

of mobile devices,” in Proc. of MobiSys. ACM, 2012.
[12] D. Hoang and L. Chen, “Mobile cloud for assistive healthcare (mocash),”

in Proc of APSCC, Dec 2010.
[13] S. Noor, M. Haque et al., “Cellcloud: A novel cost effective formation

of mobile cloud based on bidding incentives,” in Proc. of IEEE Cloud,
June 2014.

[14] M. Shiraz, A. Gani et al., “A review on distributed application processing
frameworks in smart mobile devices for mobile cloud computing,” Proc.
of ICUFN, 2013.

[15] X. Ma, Y. Cui et al., “Energy optimizations for mobile terminals via
computation offloading,” in Proc. of PDGC. IEEE, 2012.

[16] E. Cuervo, A. Balasubramanian et al., “Maui: making smartphones last
longer with code offload,” in Proc. of MobiSys. ACM, 2010.

[17] B.-G. Chun, S. Ihm et al., “Clonecloud: elastic execution between mobile
device and cloud,” in Proc. of EuroSys. ACM, 2011.

[18] X. Zhang, A. Kunjithapatham et al., “Towards an elastic application
model for augmenting the computing capabilities of mobile devices with
cloud computing,” Mobile Networks and Applications, 2011.

[19] T. Justino and R. Buyya, “Outsourcing resource-intensive tasks from
mobile apps to clouds: Android and aneka integration,” in Proc. of
CCEM, 2014.

[20] T. Shi, M. Yang et al., “An adaptive probabilistic scheduler for offloading
time-constrained tasks in local mobile clouds,” in Proc. of ICUFN, 2014.

[21] A. Mtibaa, K. A. Harras et al., “Towards computational offloading in
mobile device clouds,” in Proc. of CloudCom. IEEE, 2013.

[22] H. Eom, P. S. Juste et al., “Machine learning-based runtime scheduler
for mobile offloading framework,” in Proc. of CloudCom, 2013.

[23] “Universal Plug and Play (UPnP),” http://www.upnp.org/.
[24] “Tmote sky,” http://j.mp/1DiMGsd.
[25] “Cooja Simulator,” https://github.com/contiki-os/contiki/wiki/

An-Introduction-to-Cooja.
[26] C. M. Medaglia and A. Serbanati, “An overview of privacy and security

issues in the internet of things,” in The Internet of Things. Springer,
2010.

[27] H. Takabi, J. Joshi et al., “Security and Privacy Challenges in Cloud
Computing Environments,” Security Privacy, IEEE, Nov-Dec 2010.

[28] W. Jansen and T. Grance, “Guidelines on Security and Privacy in Public
Cloud Computing,” NIST, Tech. Rep., 2011.

[29] T. Ristenpart, E. Tromer et al., “Hey, you, get off of my cloud: exploring
information leakage in third-party compute clouds,” in Proc. of CCS.
ACM, 2009.

[30] Y. Chen, V. Paxson et al., “What’s new about cloud computing security?”
EECS Department, University of California, Berkeley, Tech. Rep., 2010.

[31] P. Groth, M. Luck et al., “A protocol for recording provenance in
service-oriented grids,” in Proc. of OPODIS, 2005.

[32] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc.
of STOC. ACM, 2009.

[33] M. van Dijk and A. Juels, “On the impossibility of cryptography alone
for privacy-preserving cloud computing,” Cryptology ePrint Archive,
Report 2010/305, 2010.

[34] R. A. Popa, C. M. S. Redfield et al., “Cryptdb: Protecting confidentiality
with encrypted query processing,” in Proc. of SOSP, October 2011.

[35] R. Moskowitz, P. Nikander et al., “Host identity protocol,” RFC5201,
April, 2008.

[36] L. Bokor, Z. Faigl et al., “Survey and evaluation of advanced mobility
management schemes in the host identity layer,” in Proc. of IJWNBT.
IGI Global, 2014.

