
HOT ZONE IDENTIFICATION:

ANALYZING EFFECTS OF DATA SAMPLING ON SPAM

CLUSTERING

Rasib Khan, Mainul Mizan, Ragib Hasan, Alan Sprague

Department of Computer and Information Sciences

University of Alabama at Birmingham, AL, USA

 115A Campbell Hall, 1300 University Boulevard

Birmingham, Alabama 35294-1170

Phone: 205.934.8643, Fax: 205.934.5473

{rasib, mainul, sprague, ragib}@cis.uab.edu

ABSTRACT

Email is the most common and comparatively the most efficient means of exchanging information in

today's world. However, given the widespread use of emails in all sectors, they have been the target of

spammers since the beginning. Filtering spam emails has now led to critical actions such as forensic

activities based on mining spam email. The data mine for spam emails at the University of Alabama at

Birmingham is considered to be one of the most prominent resources for mining and identifying spam

sources. It is a widely researched repository used by researchers from different global organizations. The

usual process of mining the spam data involves going through every email in the data mine and clustering

them based on their different attributes. However, given the size of the data mine, it takes an exceptionally

long time to execute the clustering mechanism each time. In this paper, we have illustrated sampling as an

efficient tool for data reduction, while preserving the information within the clusters, which would thus

allow the spam forensic experts to quickly and effectively identify the ‘hot zone’ from the spam campaigns.

We have provided detailed comparative analysis of the quality of the clusters after sampling, the overall

distribution of clusters on the spam data, and timing measurements for our sampling approach.

Additionally, we present different strategies which allowed us to optimize the sampling process using data-

preprocessing and using the database engine's computational resources, and thus improving the

performance of the clustering process.

Keywords: Clustering, Data mining, Monte-Carlo Sampler, Sampling, Spam, Step Sequence Sampler,

Stepping Random Sampler, Hot Zone

1. INTRODUCTION

Advancement of the IT infrastructure significantly affects the way people communicate. Social interaction

and information exchange are highly dependent on emails and other such forms of media. At the same time,

such medium of communication has been the target of misuse since the beginning. Thus, the negative

motives from spammers have been a serious issue, which have led to phishing, viruses, malware bots, and

other such attacks.

Spam emails are mostly generated by malware bots on different computers across the Internet. However,

malwares installed by the same spammer exhibit a specific pattern in the spam emails [Nhung and Phuong

2007, Ying et al. 2010]. The content of the spam is usually generated using a common template. Therefore,

the identification of the pattern in these spam emails is significantly important to IT forensic experts. The

identified pattern can then help identify a specific spammer and follow through with proper investigations

[Ono et al. 2007, Dagon et al. 2007]. Mining spam emails helps discover and correlate useful patterns. Most

of the mining techniques are text-based, given that such spam emails are mostly text-oriented. Once the

emails are scrutinized for such patterns, different clustering techniques and algorithms can be applied over

the email data to group the spams based on some similarity criteria. The speed of producing faster clusters

from large datasets depends on efficient algorithms. However, in case of very large datasets, it might be

required to reduce the size of the data prior to the clustering process.

In this paper, we focus on the evaluation of clustering performed on sampled spam emails. The data used is

from the Spam Data Mine at the University of Alabama at Birmingham (UAB) [UAB-CIS 2013]. The UAB

Spam Data Mine is a large and widely researched repository for spam emails, and is used as a helpful

resource by researchers from different global organizations. Given the huge number of spam emails

collected every day, the clustering of the spams take a long time. However, in this work, instead of focusing

on algorithms to optimize the clustering process, we considered sampling the dataset prior to fetching it to

clustering algorithms. Once we are able to prove sampling as an efficient and applicable solution for data

reduction, we believe appropriate clustering algorithms can be applied accordingly. We have adopted the

previous work done by Chun Wei et al. to create the clusters based on patterns in the subject header of the

spam emails [Wei et al. 2009].

In this work, we have utilized four simple methods of sampling that we have applied on the spam data from

the data mine. As a result, we aim in making the process of clustering more efficient and less time

consuming. Furthermore, we provide the results to illustrate that the sampled data from the UAB Spam

Data Mine preserves the information contained for forming clusters and highlight the ‘hot zone’. In this

context, we refer to ‘hot zone’ as the most prominent clusters with respect to spamming activities. We have

presented the results in order to support our claim of using sampled spam data to allow investigators a faster

and better opportunity to identify the ‘hot zone’ in spam clusters. We illustrated the resulting clusters from

the sampled data, and performed extensive comparative analysis with the clusters formed using the whole

data set. Our evaluation includes an analysis of the data distribution on the spam data, and also the time

measurements for the different operations in the algorithm. The paper also includes a different approach to

optimize the sampling process, utilizing the efficiency of the database engine, which allowed us to enhance

the resulting performance of the required time.

Contributions: The contributions in this paper are as follows:

 We evaluate the sampling methods on actual spam emails from the UAB Spam Data Mine. The

validation and effectiveness of sampling is based on the following: (a) quality of the clusters produced,

(b) the data cover/distribution of spam emails within the data mine, and (c) the timing performance for

the clustering operation. All the sampling models have been validated for varying sampling rates

against the clusters created using the complete data set. Our results show that we are successfully able

to highlight the ‘hot zone’ from the spam emails with a significant improvement in timing performance.

 We present techniques and strategies for the most efficient way to implement the sampling process and

retrieve the huge number of spam emails from the data mine, which are then used to execute the

clustering algorithm. The experimental measurements using our optimization strategies illustrate that

there are further improvements in performance, compared to naïve SQL query based retrieval of

sampled spam records from the UAB Spam Data Mine.

The rest of the paper is organized as follows. The motivation for the work is presented in Section 2. Section

3 describes the organization of the UAB Spam Data Mine, including the clustering algorithm from the work

of Chun Wei et al. [Wei et al. 2009]. The different sampling models are described in Section 4. The results

and corresponding analysis are presented in Section 5. Section 6 includes the optimization strategies to

improve the efficiency of the sampling process. Finally the related works and conclusion are presented in

Section 7 and Section 8 respectively.

2. RESEARCH MOTIVATION

The increasing number of Internet users has attracted criminals to the field of online crimes. eCrimes have

been significantly on the rise since the last few years. This section illustrates the issue of eCrimes on the

Internet, and the research motivation behind the work on investigating spam clusters, and the importance of

identifying the hot zone.

2.1. eCrimes on the Internet

Information security and economics have become interdependent in recent times. Corporations employ

information security specialists, as well as economists and lawyers to deal with the rising concern of

eCrimes. The network of criminal activities has become more organized with structured online black

markets, where the criminals trade insider information. Data and information, such as credit card and PIN

codes, are sold to online anonymous brokers in these underground eCrime markets. According to Moore et

al. [Moore et al. 2009], credit card information are sold at advertised prices of $0.40 to $20.00 per card, and

bank account credentials at $10 to $100 per bank account. Social security numbers and other personal

details are sold for $1 to $15 per person, while online auction credentials fetches around $1 to $8 per

identity. Subsequently, the brokers sell the information to specific expert hackers, who perform the final act

of money laundering.

The information collected in these online criminal activities incorporate specialized approaches. Usually,

Internet users are driven to false websites with the help of advertising emails. These bulk emails are

generally classified as spams, which are sent by spammers, using malicious software running on infected

machines. The infected computers are used by the spammers to record keystrokes and send further spam

emails.

The monetizing channel for spam emails includes multiple organizations. It is illustrated by Levchenko et

al. [Levchenko et al. 2011], the spam value chain has multiple links between the money handling authorities

and the spammers. Furthermore, according to an approximate consensus, 5% of online devices on the

Internet are susceptible to being infected with malware. At least 10 million personal computers have been

assumed to be infected with malware in 2008, the number for which should have had increased significantly

over the last few years [Moore et al. 2009]. Thus, these figures easily indicate that the network for criminal

activities have outgrown the authorities dealing with eCrimes.

2.2. Spam Investigation

Spam emails are perceived as being analogous to junk mails. These emails are generally advertising emails,

or with other forms of undesired content. However, spam emails are not as innocent as junk mails. They are

sent to a large number of recipients, and usually have hidden motives along with the content of the email.

They are considered as the primary channel for attackers to deploy Trojans, worms, viruses, spyware, and

botnets on other machines across the Internet.

The email body of spams has hidden scripts, cookies, and other attached content to attract the recipient of

the email. Once the user opens the email, the scripts may use the current information from the browser to

expose the identity of the user to the attacker. This is the easiest and a very well-known approach, but still

the most common scenario where users are victims of identity thefts on the Internet. This information can

be used to remotely access the user's machine and install unwanted malwares as botnets. The malware can

then operate from the infected machine using the identity of the user, and send further spam emails or

perform other unwanted tasks.

When an attacker sends a spam, he generally uses a template to generate the content of the email. The

format of the content is thus prevalent in all the spam emails those are being sent. However, the spammers

replace some words or phrases to introduce variation and hence bypass the spam filters. Thus, it becomes a

non-trivial task for such filtering services to detect all the spam. Data mining from spam emails is useful to

detect and investigate these patterns. The spam emails are scrutinized and parsed into different text-based

segments. Each email comprises of certain attributes, such as the sender email, subject header, and the mail

body. These individual attributes can be investigated to match other spam emails, and thus grouping similar

spam emails. Once a pattern is observed, they can be clustered and classified as a specific spam campaign

[UAB-CIS 2013, Caruana and Li 2008, Kyriakopoulou and Kalamboukis 2008, Sasaki and Shinnou 2005,

Ying et al. 2010, Wei et al. 2009]. The individual clusters obtained from grouping spam emails allow the

eCrime investigators to identify a particular spammer. The clustered spams are examined to classify the

spammer and obtain further track-down information. eCrime investigators use these collected data to hunt

down online criminals and take appropriate actions against the involved personnel.

The Spam Data Mine at UAB collects approximately 1 million spam emails each day [UAB-CIS 2013].

The spam emails can then be used to find the patterns and perform clustering on the collected data. The

identified clusters are assumed to be individual spam campaigns by an attacker. The extracted patterns from

the spam emails are dependent on the template used by the spammer to generate the spam. However, it

should also be noted that an attacker generally uses a given spam template for a few days, after which he

changes the format of the emails. This constant change in the format of the spams makes it difficult to

identify a particular attacker. As a result, spam emails collected over a small duration of time exhibits the

specific pattern, after which the extracted cluster information does not apply any more.

From the above scenario, we have observed the following requirements for investigating eCrimes using

spam clusters. First, it is important that the identification of the spam campaigns should be done as early as

possible. The multitude of financial loss resulting from eCrimes requires the investigation to proceed

quickly. The sooner a particular spam campaign is taken down, the lesser is the financial loss. A quick

action against a spam campaign would also mean that lesser people will fall as victims to the campaign on

the Internet. However, given the huge amount of data, it requires a lot of time to execute the clustering

operation. Thus, the inherent requirement to act quickly against such eCrimes is not fulfilled with the

current approaches for clustering spam emails. Moreover, the quickly changing pattern of templates by the

spammers makes it more difficult to extract the information from the spams and act on it accordingly.

Second, the ‘hot zone’ of the spam campaigns are the ones about which conclusive remarks can be made

about an attacker. Here, we refer ‘hot zone’ as the group of largest clusters and the most prominent spam

campaigns on the Internet. The largest spam clusters imply a large number of similar spam emails. As a

result, the larger clusters incorporate more information for the eCrime investigators and law enforcement

authorities to study the criminals. It is more important to identify the largest clusters rather than obtaining

an extensive number of clusters for the huge amount of spam from the data mine. It might not be the same

scenario when it comes to user privacy protection and spam filters on web browsers and email clients,

where more fine-grained spam filtering is required to protect the users on the Internet. Therefore, when it

comes to criminal investigations and law enforcement, the prominent clusters are the ones of interest, while

the smaller ones can be classified as outliers.

3. CLUSTERING SPAM DATA

For our work in this paper, we have adopted an existing clustering algorithm proposed by Chun Wei [Wei

2010] and Chun Wei et al. [Wei et al. 2009]. The algorithm has been executed using data from the UAB

Spam Data Mine [UAB-CIS 2013]. In this section, we discuss the background and the description of the

data mine, including the clustering technique proposed by Chun Wei et al. on the spam data [Wei 2010,

Wei et al. 2009].

3.1. Background

The initial research issue for knowledge extraction or data mining is classifying data and creating

representations of the feature space. Clustering is most commonly used for feature compression and

extracting information [Kyriakopoulou and Kalamboukis 2008]. Specific features are compared and

clustered into groups which represent a commonality among all of its data items. The task of measuring the

similarity of data items can be performed in different ways. The most common methods for measuring

similarity/dissimilarity are Jaccard and Levenshtein coefficients [Jaccard 1901, Levenshtein 1966]. The

distances can then be used in other clustering algorithms to create and evaluate clusters [Kanungo et al.

2002, Hartigan and Wong 1979, Ying et al. 2010, Wei 2010, Caruana and Li 2008]. The clustering

algorithms thus use the similarity or dissimilarity of individual data items based on the feature space, and

group them into a common cluster based on preset threshold configurations.

3.2. The Spam Data Mine

We utilized the UAB Spam Data Mine [UAB-CIS 2013] for the purpose of our research evaluation. The

UAB Spam Data Mine is a research project under The Center for Information Assurance and Joint

Forensics Research (CIS-JFR)
1
. The Center generates information about currently on-going campaigns by

spammers. It archives spam emails received from numerous sources and honey-pots, and collects

approximately 1 million spam emails each day.

The collection of spam emails from the sources is collected in a batch-wise operation. General users on the

Internet, upon receiving a (suspected) spam email, marks the email as spam, and forwards it to the honey-

pot email address for archiving. Additionally, numerous other honey-pots are placed at different points in

the network which dedicatedly receive and archive spam emails. The archived spam emails are collected

batch-wise at specific time intervals during the day. Thus, due to the manner these spam emails are stored

and collected in the data mine, the records do not display a shuffled organization in their sequence.

Subsequently, the spam data mine stores the data regarding spam emails parsed into different attributes. The

current database design holds the following attributes for each spam email: message_id, subject,

sender_name, sender_username, sender_domain, sender_ip, receiving_date, time_stamp, word_count.

3.3. Algorithm for Clustering

The method employed by Chun Wei et al. [Wei et al. 2009] for clustering the spam data is specific to the

data from the UAB Spam Data Mine [UAB-CIS 2013]. In this section, we present the clustering algorithm

designed and implemented by Chun Wei et al. [Wei et al. 2009] and also included as a part of the work in

1
 The Center (CIS-JFR), http://thecenter.uab.edu

Algorithm 1 : The ‘Fast-n-Dirty’ Spam Clustering Algorithm by Chun Wei et al. [26]

1: Function Clustering-ChunWei {

2: Initialize Cluster-list as empty

3: Connect to DB : Load spam data

4: For each spam record X:

5: X-sender-hash = MD5-hash(X.sender_username)

6: For each spam record Y:

7: Y-sender-hash = MD5-hash(Y.sender_username)

8: If (X-sender-hash = Y-sender-hash), then:

9: C = Cluster(X, Y)

10: Add C to Cluster-list

11: Calculate Mean-cluster-dist for Cluster-list

12: Calculate Std-dev-cluster-dist for Cluster-list

13: Threshold = (Mean-cluster-dist + (4 * Std-dev-cluster-dist))

14: For each cluster C in Cluster-list:

15: If (C.Cluster-dist < Threshold), then:

16: Remove C from Cluster-list

17: Add C to Small-clusters-list

18: For each cluster CX in Small-clusters-list:

19: For each cluster CY in Small-clusters-list:

20: If (CX.word count = CY.word count), then:

21: C = Cluster(CX, CY)

22: Add C to Cluster-list

23: Calculate Mean-cluster-dist for Cluster-list

24: Calculate Std-dev-cluster-dist for Cluster-list

25: Threshold = (Mean-cluster-dist + (4 * Std-dev-cluster-dist))

26: For each cluster C in Cluster-list:

27: If (C.Cluster-dist < Threshold), then:

28: Remove C from Cluster-list

29: Else:

30: Generate Subject-pattern using Leveshtein match

31: Add Subject-pattern to C

32: Publish Cluster-list

33: };

[Wei 2010]. For our purpose, we chose the rather ‘fast-n-dirty’ version of the clustering algorithm by Chun

Wei, which is shown in Algorithm 1. The clustering algorithm matched spam emails on exact similarity of

sender email addresses. They are matched using the MD5 hash of the sender's email. Similar items were

clustered into a common group. From within the clusters, some of them are set aside using a bounded

threshold, which was set at a minimum of [mean + (4*standard deviation)].

Next, the process was repeated for the word_count of the email body for all the small clusters, and further

clusters were created. As a result, some of the clusters had both the sender_name and the word_count in the

feature space, while some only had the word_count criteria. Finally, a Levenstein index is calculated to

create a common pattern for the subject header for each of the clusters. The output patterns of subject

headers for the spam emails are produced in the form ‘__ similar __ word’. Here, the blank spaces are the

words which could be substituted for other words. The blank spaces together with the words ‘similar’ and

‘word’ define the basic template of the subject headers for each of the clusters of similar spam emails.

4. SPAM DATA SAMPLING

Sampling is a well-known technique for data reduction, given that it preserves the information from the

original data set. In this section, we present our approaches to create the sampled data. We have presented

four different schemes for creating the sampled data, which have been discussed in the following sections.

For each of the models, we invoke the sampling method with the begin index, end index, and sampling rate

parameters.

4.1. Simple Random Sampler

The simple random sampler is implemented using the Java Random class
2
. The Java Random class

initializes using a 48-bit long random seed. Subsequently, it is modified using a linear congruential formula

to generate a stream of pseudo-random numbers [Knuth 2006]. Alternatively, Mersenne Twister is another

method for polynomial calculations over two-element fields to generate uniform pseudo-random numbers

[Matsumoto and Nishimura 1998]. However, our random generator uses the linear congruential formula due

to the simplicity of the model, and serves the purpose of our work.

The simple random sampler takes in a range of values within a begin/end index for message_ids.

Subsequently, it generates the random indexes within the given range, according to the desired sampling

rate. However, the generated random indexes may or may not be evenly distributed across the range of

values for the message_ids.

4.2. Step Sequence Sampler

The step sequence sampler is another method of sampling which we utilized for our spam data. As shown in

Figure 1a, given the sampling rate r, we initially calculated the step frequency f. The range of values for the

message_ids is then divided into f-segments, and the boundary index values are returned as the sampled

indexes. As a result, the obtained sampled data is evenly distributed, and sequentially selected from the data

set.

2
 Java Random class, http://docs.oracle.com/javase/7/docs/api/java/util/Random.html

Figure 1: Sampling Methods: Step Sequence Sampler (SSS), Stepping Random Sampler (SRS), and Monte

Carlo Sampler (MCS)

4.3. Stepping Random Sampler

The stepping random sampler is an extension of the step sequence sampler, as shown in Figure 1b. As

before, we calculated the step frequency f for the given range of message_ids based on the sampling rate.

After that, we utilized the Java Random class to randomly select an index from within each block. Thus, the

sampled index values for the message_ids are evenly distributed with the frequency f, and randomized

within each blocked segment, thus ensuring unbiased results.

4.4. Monte Carlo Sampler

Monte Carlo methods refer to computational algorithms which are based on repeated random sampling to

obtain a desired goal. It is a process of calculating heuristic probability for a given scenario which is

defined by the specific validation of a success or fail event [Hammersley et al. 1965]. In our case, we

designed a simple Monte Carlo sampler to probabilistically generate some random indexes for choosing the

sampled message_ids, as illustrated in Figure 1c, and presented in Algorithm 2.

In the Monte Carlo sampler, for each index i, where i is between begin and end, we ‘roll’ between 0 -100. If

the random ‘roll’ is less than or equal to the sampling rate r, we select the specific index i. Thus, the

sampled indexes are sequentially selected or discarded from within the range of begin and end indexes for

message_ids. However, the number of index values that we receive from the Monte Carlo sampler is not

exact, but probabilistically close to match the sampling rate r. The success or fail events in Monte Carlo

models are usually executed for a large number of events. Therefore, according to the model, the larger the

range of message_ids, the closer we get to the desired value for the number of sampled items [Hammersley

et al. 1965].

4.5. Comparison of Sampling Methods

The properties of the different sampling methods are summarized in Table 1. In this context, we define the

following properties for the different sampling methods.

i. Randomness in the sampling process implies the probability of a particular index being chosen in

the sample.

ii. Sequential sampling refers to the criteria of the chosen indexes being in order once the sampling

process has completed.

iii. Repetition in sampling means the possibility of an index being chosen more than once.

iv. Data cover represents the feature of the chosen sampled indexes being evenly distributed over the

range of values from the original data set.

v. Number of samples refers to the number of indexes chosen, given the total number of indexes n,

and the sampling rate r.

As shown in Table 1, the simple random sampler provides good randomness, as it depends on a simple

linear congruential formula to generate the pseudo-random number stream. However, it is not sequential, as

the chosen index samples are generated at random, and does not preserve order. Additionally, the simple

random sampler does not guarantee uniqueness, as the same number can be generated more than once.

Therefore, the already mentioned properties can be utilized to state that the simple random sampler does not

provide a guaranteed data cover either. The step sequence sampler does not provide any randomness and is

Algorithm 2 : The Monte Carlo Sampler

1: function Monte-Carlo-Sampling(Start, End, Sampling-rate) {

2: Initialize Sampled-index-list as empty

3: For index I, where I from Start to End:

4: Rand = Generate-random-number(1 to 100)

5: If {Rand <= Sampling-rate}, then:

6: Add I to Sampled-index-list

7: Return Sampled-index-list

8: };

purely sequential. However, we are able to ensure no repetition and full data cover. Using the stepping

random sampler allows mediocre randomness, but contains sequence, ensures uniqueness, and also provides

a full data cover. Finally, the Monte Carlo method provides good randomness and ensures sequentiality

with no repetition. However, it has a probabilistic sample size of approximately (n*r), where n is the data

size and r is the sampling rate. The probability of the sample size will get closer to (n*r) with a greater

range of values for the indexes.

5. RESULTS AND ANALYSIS

In this section, we present the results obtained from the different sampling methods presented previously.

The sampled data were mined and used to create clusters, based on the algorithm of Chun Wei et al. [Ying

et al. 2010, Wei 2010]. We also provide an analysis of the results and comparison of each of the sampling

methods against clustering performed on the full data set. The results presented have been generated using

two days' spam data. As mentioned earlier, the data mine collects a huge number of spam emails, and there

were a total of approximately 1.8 million spam emails in these two days.

5.1. Clustering Quality

Initially, we performed the clustering on the whole spam data for a range of two days. With the clusters

formed, we selected the ten largest clusters and analyzed their statistics. We recorded the number of data

points, pattern of the subject within the cluster, and the percentage of data that each of the clusters has with

respect to the data size. We refer to clustering factor as the value between 0 and 1, which represents the size

of the cluster in terms of the size of the data. The rightmost bar on Figure 2 shows the distribution of the

clusters which were created from complete data set for the given range of days. It can be seen that the ten

largest clusters actually represent almost 25% of the whole data set, with three largest clusters representing

approximately 9%, 8%, and 3% respectively.

Next, we executed the clustering algorithm on sampled data with each of our samplers. The sampling was

performed at varying rates of 1%, 2%, 3%, 5%, and 8% respectively. For each of the cases, we analyzed the

clusters created with the sampled data. To visualize the clustering quality with better understanding, we

normalized each of the sampled clusters using the size of the sample to calculate the clustering factor for

each. Using a normalized view for the sampled clusters thus makes it easier to evaluate the quality of the

clustering with respect to the clusters formed using the full data set. The clustering factor for each of the

sampling methods at varying sampling rates is illustrated in Figure 2.

From the results, it can be seen that random sampling, step sequence, and stepping random create the

clusters with a similar clustering factor as that of the full data set. Thus, the more similar the clustering

factors and distributions are, the better they can be claimed to have performed. It should also be noted that

all the three sampling methods perform in a stable manner with their varying sampling rates. Additionally,

we verified that each of the ten largest clusters from the sampled data actually coincides with at least eight

of the largest clusters from the full dataset. However, they might sometimes be slightly out of order in the

sampled cluster sizes. Moreover, the top three to five clusters as shown in Figure 2 is always the same

clusters in all the cases, which verifies that the sampling effectively allows us to identify the ‘hot zone’ of

spam campaigns. Table 2 describes the patterns of subject headers for each of the top ten clusters created in

order of their sizes. It can be seen that most of the clusters created from the 2% step sequence sampling are

 RS SSS SRS MCS

Randomness good bad med good

Sequential no yes yes yes

Repetition maybe no no no

Data cover maybe yes yes maybe

Number of samples n*r n*r n*r ≈ n*r

Table 1: Comparison of properties for the Random Sampler (RS), Step Sequence Sampler (SSS), Stepping Random

Sampler (SRS), and the Monte Carlo Sampler (MCS)

exactly in the same order if compared to the clusters created using the full data set. However, there are

minor interchanges in the position of the clusters in their ordering. Nonetheless, they are not the top

clusters, and are usually of similar sizes and hence tend to swap places with minor changes in the order.

However, with the Monte Carlo sampler, it can be seen that the sampled data had some skewness towards

the clustering data points. This can be claimed as both positive and negative. Given that the results tend to

have a greater clustering factor for the larger clusters and represent almost 45% of the sampled data, it can

be argued that Monte Carlo sampling makes it easier to focus on the largest clusters. However, they tend to

distort the actual distribution of clusters and misrepresent the clustering factor for each of the clusters

compared to the full data. An interesting convergence towards the desired clustering factor distribution can

be seen as the sampling rate is increased.

Therefore, from the clusters created and the clustering factors, we are able to infer the effect of the different

sampling methods. It can be seen that random, step sequence, and stepping random sampling tends to

preserve the distribution of the original data set of spams. Therefore, we can say that the sampling models

for the above three are representative sampling. On the other hand, Monte Carlo seems to perform well in

highlighting larger clusters and removing noise from smaller clusters. Hence, we call it noise suppressive

sampling. Given the context and the requirement, each of the sampling methods can be utilized accordingly.

5.2. Data Cover

We utilized the clusters created from our experiments to analyze the distribution of the data in the spam

data mine. We are interested to visualize how the spam emails have been archived in the data mine, with

respect to the cluster each spam email belongs to. In this context, data cover refers to the distribution of the

spam emails in the data set.

Figure 3 illustrates the graph to help visualize the distribution for the complete dataset. The x-axis

corresponds to the total number of message_ids for the given date. The y-axis specifies the number of spam

emails in the cluster to which the corresponding message_id belongs to. The colored lines are formed by

very closely placed data points, and each of the colors represents a different cluster.

We also present the data cover graphs generated from the clusters created using the four different sampling

methods, shown in Figures 4, 5, 6 and 7 respectively. The sampled graphs have been produced only for a

sampling rate of 2%, which is sufficient to prove the effectiveness of sampling. It can be seen that each of

the sampling methods have been equally capable to successfully identify the same top clusters which have

been created by the complete data set. Additionally, it can be seen that most items which belong to the same

cluster reside closely in the data set. This observation is useful in asserting the fact that sampling the data

which preserves the sequentiality is also able to preserve the representation of the dataset.

An interesting observation is the comparison of tailing or sparse data from Figure 3 compared to any of the

other Figures 4, 5, 6, and 7. All the sampling methods have nicely cleaned the scattered data points.

No. Clustering on full data set Clustering using 2% Step Sequence

1 Canadian Pharmacy: BUY NOW VIAGRA & CIALIS ! Canadian Pharmacy: BUY NOW VIAGRA & CIALIS !

2 New prices New prices

3 Lowest prices Lowest prices

4 Vigara Now Vigara =

5 Vigara Vigara Now

6 Corporate eFax message - pages Corporate eFax message - pages

7 Vigara SALE! United Parcel Service notification

8 United Parcel Service notification Vigara

9 Vigara Now Vigara =

10 Vigara Off! Purchase your Levitra from one of our drugstores today.

Levitra/Viagr/Cialis from $1.25

Table 2: Subject Header Patterns of Ten Largest Clusters Compared using Full Dataset Vs. 2% Sampled Data

Figure 4: Spam Distribution based on Clusters for Simple

Random 2% Sampling
Figure 5: Spam Distribution based on Clusters for Step

Sequence 2% Sampling

Figure 6: Spam Distribution based on Clusters for Stepping

Random 2% Sampling
Figure 7: Spam Distribution based on Clusters for Monte

Carlo 2% Sampling

Figure 2: Clustering Factor for Ten Largest Clusters Figure 3: Spam Distribution based on Clusters for

Complete Dataset

However, the sampled data for step sequence sampler and Monte Carlo sampler (Figure 5 and 7) still shows

some minor traces of the existence of the scattered data in comparison to the original data. In all the cases,

the leveling clusters at the bottom are cluttered together. However, these are the smaller clusters and do not

play any interesting role in the identification of the ‘hot zone’.

Thus, Figures 3, 4, 5, 6, and 7 illustrates the way the data set is organized. This can lead us to generalize a

pattern of arrivals of spam emails into the archive. Additionally, such a pattern of data arrival strengthens

ours claim of sampling being sufficient and effective to preserve the characteristics of the dataset and the

largest clusters from the spam emails in the data mine.

5.3. Timing Performance

Here, we present the timing performance enhancement from mining and clustering the sampled data

compared to using the whole dataset. The database was deployed on a x86 64-bit machine, using Intel 2.4

Ghz processor, with 6 processing cores and 12 GB RAM. Additionally, we executed the Java program to

perform the clustering on the same machine. Hence, all timing measurements have been recorded based on

the corresponding execution times. Figure 8 illustrates the timing measurements from the different sampling

rates, including the timing for the complete data set.

The mean time required for loading the data from the database is 4261 milliseconds, and is depicted by the

lower block in the timing bars in Figure 8. The loading time of the data is almost constant for all cases. This

is because the query executed on the database from the application requests for the complete dataset for the

specified day(s). Once the data is received, the application then performs an application level filtering of the

data, by either selecting or discarding the item, based on the sampled indexes generated separately. Thus,

given that the machine executing the program had sufficient main memory, the task of on-memory filtering

of the data was performed within a very short time.

The interesting measurement to be noticed is the upper segment in Figure 8, which corresponds to the

processing time required for each of the cases of reduced data size using varying sampling rates. Once the

data have been loaded and sampled, the clustering algorithm [Ying et al. 2010, Wei 2010] creates the

clusters based on the given data. It can be distinctively seen that the time required for the whole data set is

very high, compared to the sampled data clustering. Additionally, the algorithm adapted from Chun Wei et.

al.'s work is the simple and faster version, which still is significantly high compared to the measurements

obtained for the sampled data. The increase in time required with increasing sampling rate is not exactly

linear, but not quadratic either. Thus, the reduction in the amount of time to perform a whole data set

clustering can be reduced by a factor greater than linear if a sampled data set is used.

Figure 8: Timing Performance for Application Level

Filtering
Figure 9: Timing Performance for Database Filtering

using Naive SQL Query

6. SAMPLING OPTIMIZATION

For further research, we explored some strategies to optimize the process of sampling. In our opinion, the

timing performance of sampling can be improved if we are able to perform the operation on the database

engine. The following sections illustrate our process of investigation and the methods we adopted to fulfill

the requirements.

6.1. Data Preprocessing

Given the huge number of spam emails gathered every day, reading the data items from the database

required a significant amount of time. In the clustering implementation by Chun Wei et. al. [Wei et al.

2009], they performed a read operation on the whole data for a specific date. As a result, this incurred to a

huge number of read operations on the database server.

We performed some initial data preprocessing to reduce the number of read operations while retrieving the

data items from the database. We created a new table, namely daily_index, with fields receiving_date and

message_id. The table was populated using the minimum values for the message_id for each date from the

spam table. With the daily_index table created, we can now easily retrieve the range of values for

message_id for the given dates for which we will perform the clustering. For each sampling method, we

initially provide the message_id range, get the sampled indexes, and subsequently, retrieve only the

required data items from the database based on the desired sampling rate r. As a result of this operation, we

are able to save [n-(n*r/100)] read operations from the database; where n is the total number of records for

the given date.

6.2. Naïve SQL Query

The initial time measurements were taken based on an application level filtering for the sampling process.

On the contrary, with the data pre-processing and the daily_index table created, we initially generated

indexes for the sampled message_ids. Subsequently, we queried the database with a long matching clause

of the sampled message_ids to retrieve the required rows. However, in this form of queries, we failed to

improve the timing requirement. The size of the query was itself very large, and the database took a very

long time to select and load the sampled records. The measurements from the naïve SQL query are

illustrated in Figure 9. It can be seen clearly that even though the processing time is reduced, the sampling

queries take an exceptionally long time to load the sampled data. Thus, as we failed to improve the

performance using the naïve SQL query, we investigated further options to optimize the sampling process.

6.3. Cross-Product with Temporary Table

Next, we considered executing the query in a different fashion. In this approach, similar to the previous, we

performed the sampling selection using the daily_index table. However, the next operation included

creating a temporary table with only the selected message_ids. A query was then executed on the database

to return the cross-product of the temporary table and the spam table. The execution of cross-product

operation is optimized by the database itself, and therefore, the database is able to return the resulting

records in split seconds. The timing measurements from using a temporary table and cross-product

operation are shown in Figure 10.

It can be seen that the total time required for the sampled data is much lesser than the time required for the

complete data set. As it was seen previously in Figure 9, the load times for the sampled records were

significantly high compared to the full data retrieval. However, in this case, it can be seen from Figure 10

that the load times for sampled message_ids are around a few hundred milliseconds, which are much lesser

compared to the full data. The maximum load time was required when we reached a sampling rate of 8%,

which was still equal to the load time for the whole data set. If we compare our results from the initial

timing measurements presented in Figure 8, it can be seen that the times for sampling rates 1%, 2%, 3%,

and 5% are all much lesser in our optimized sampling operation. In the case of 8%, it is still lesser, but

maybe comparable to the previously recorded measurements.

Therefore, with the given results, we can argue that the proposed approach is significantly better than the

original application layer filtering. We have successfully illustrated that the processing time for the sampled

Figure 10: Timing Performance for Database Filtering using Temporary Table

clustering using a temporary table is much better for reasonable sampling rates. Additionally, sampled

clustering using this strategy reduces a lot of task load on the machine which executes the clustering

algorithm. Even though we had both the program and the database on the same machine, it can be surely

assumed that the database server is usually a separate machine with more processing power. Therefore, the

described method of optimizing the process of sampling takes advantage of the processing power of the

database engine, and keeps the machine running the clustering algorithm much lighter in its operation.

7. RELATED WORKS

Researchers have been working on interaction with large databases for a long time. Data mining and

knowledge extraction technologies have been a rather new addition to the list of research works on large

data sets. The clustering algorithm used here has been the ‘fast-n-dirty’ version of Chun Wei's work [Wei

2010, Wei et al. 2009]. The focus of this paper was to illustrate the efficiency which can be reached prior to

the process of clustering, leading to a faster identification of the ‘hot zone’. Therefore, the algorithm for

clustering is separate from the sampling process. As a result, any underlying algorithm for the sampling

models will provide more efficient results with respect to time and space.

The performance of the clustering process and the quality of the resultant clusters depends on the

corresponding clustering algorithms. In this paper, we have successfully illustrated that we are able to

identify the prominent spam clusters from the sampled data, with radical improvements in timing

performance for clustering algorithms. There are multiple clustering algorithms which explore the text-

based patterns in spam emails [Wei et al. 2009, Wei 2010, Kyriakopoulou and Kalamboukis 2008,

Ramachandran et al. 2007, Sasaki and Shinnou 2005], including clustering algorithms specifically

applicable for large datasets [Ganti et al. 1999]. Halkidi et al. proposed further techniques, which can be

used to validate the clustering quality [Halkidi et al. 2001]. Therefore, given that we have proved sampling

to be an effective data reduction process, our following research will focus on optimizing the clustering

algorithms.

We have explored different strategies and related works on clustering mechanisms. The oldest centroid

based clustering method is the k-means algorithm [Hartigan and Wong 1979]. Later, many optimized and

efficient versions of the k-means algorithm have been proposed [Kanungo et al. 2002]. One of the earliest

works on modern clustering techniques was proposed by Koontz et al. [Koontz et al. 1975]. They proposed

a branch and bound clustering algorithm based on global combinatorial optimization. DBSCAN is a well-

known density-based clustering algorithm. Arlia et al. proposed a method of parallelizing DBSCAN, which

is suitable for high-dimensional data, and thus can be useful in implementing a suitable clustering algorithm

for the huge number of spam emails [Arlia and Coppola 2001]. ST-DBSCAN is a different variation of

DBSCAN, proposed by Birant et al. [Birant and Kut 2007], which performs the clustering based on

identifying core objects, noise objects, and adjacent clusters. Ying et al. has already presented in [Ying et al.

2010] a variation of DBSCAN to successfully identify spam clusters. The proposed research aims for faster

clustering results from spam emails. Henceforth, it can be suitably stated that, given the organization of the

spam data mine, we will be able to preserve the results from these clustering algorithms, when compared to

clustering based on sampled data.

There has been significant research on sampling methodologies so far. The random sampling with reservoir,

proposed by Vitter [Vitter 1985], uses a non-replacing one pass sampler, requires constant space, and runs

in O(n(1 + log(N/n))) time. These sampling models aim to introduce randomness in the sampled items.

However, we are interested in identifying the most prominent clusters. The purpose is fulfilled using the

proposed models and are shown to be effective in determining the ‘hot zone’ appropriately. Nagwani et al.

[Nagwani and Bhansali 2010] proposed a weighted matching technique of attributes to measure attribute

similarity of email content. The weights of the attributes are custom assigned and are then used to create the

spam clusters. An algorithm for text clustering based on vector space is presented by Sasaki et al. in [Sasaki

and Shinnou 2005]. The proposed algorithm creates disjoint clusters with the underlying spherical k-means

algorithm to obtain centroid vectors of the spam clusters.

There are other works related to email filtering which can be related to analyzing the content of spam

emails. An interesting approach for filtering spam emails based on behavioral blacklisting has been

proposed by Ramachandran et al. [Ramachandran et al. 2007]. The proposed method overcomes the

problem of varying sender IP addresses by classifying sending patterns and behaviors of spammers, and

subsequently enforcing blacklisting decisions. Thomas et al. presents an interesting approach for spam

detection, which includes real-time web crawling of URLs, based on blacklists and whitelists [Thomas et al.

2011]. All the approaches for clustering spam emails are suitable and will have varying results. These

algorithms are typically applicable for spam filters, usually on web browsers and email clients. However,

given the size of the dataset of the UAB Spam Data Mine [UAB-CIS 2013], we suggest that the purpose of

identifying the ‘hot zone’ by eCrime investigators and law enforcement authorities is better served by

avoiding such fine-grained spam detection algorithms.

8. CONCLUSION

Spam campaigns and emails create a lot of hassle in today's world. A lot of people fall victims to such

scams every day. Most spams are sent using malware bots, which are installed on affected PCs and spread

around like a virus. The UAB Spam Data Mine collects such spam emails, and provides reports on ongoing

spam campaigns. Clustering the spam data to categorize and identify the spammer has been implemented

using the full dataset. In this paper, we presented different models for sampling the spam data, to be used as

a tool for data reduction. Subsequently, the sampled data were utilized to create the clusters.

Our obtained results substantially prove that sampling the data and creating the clusters allow the

investigators to interpret the same conclusions, as opposed to using the whole data set. As a result, we claim

that it is much faster and efficient to perform the clusters after sampling the data, and thus identify the ‘hot

zone’ within a significantly shorter period of time. We have provided extensive experimental results using

actual spam data and investigated the distribution of spam in the data mine, which reinforced our claims of

sampling being more effective given its purpose. Furthermore, we also presented an optimization strategy

which utilizes the computational power of database engines to perform the sampling operation more

efficiently, and thus promises faster results in terms of the time required.

ACKNOWLEDGEMENT

This research was supported by a Google Faculty Research Award, the Office of Naval Research Grant

#N000141210217, the Department of Homeland Security Grant #FA8750-12-2- 0254, and by the National

Science Foundation under Grant \#0937060 to the Computing Research Association for the CIFellows

Project. We would like to thank Jason Britt and Gary Warner for providing the support for the UAB Spam

Data Mine.

REFERENCES

[Arlia and Coppola 2001] ARLIA, D. AND COPPOLA, M. 2001. Experiments in parallel clustering with dbscan. In

Euro-Par 2001 Parallel Processing. Lecture Notes in Computer Science, vol. 2150. Springer Berlin Heidelberg, 326–

331.

[Birant and Kut 2007] BIRANT, D. AND KUT, A. 2007. ST-DBSCAN: An algorithm for clustering spatial-temporal

data. Data & Knowledge Engineering 60, 1, 208 – 221.

[Caruana and Li 2008] CARUANA , G. AND LI, M. 2008. A survey of emerging approaches to spam filtering. ACM

Computing Surveys Vol. 44, No. 2 (Mar), 9:1–9:27.

[Dagon et al. 2007] DAGON , D., GU, G., LEE, C., AND LEE , W. 2007. A Taxonomy of Botnet Structures. In

Proceedings of The 23rd Annual Computer Security Applications Conference. ACSAC ’07. 325–339.

[Ganti et al. 1999] GANTI, V., RAMAKRISHNAN, R., GEHRKE, J., AND POWELL, A. 1999. Clustering large

datasets in arbitrary metric spaces. In Proceedings of the 15th International Conference on Data Engineering. ICDE

’99. IEEE Computer Society, Washington, DC, USA.

[Halkidi et al. 2001] HALKIDI, M., BATISTAKIS, Y., AND VAZIRGIANNIS, M. 2001. On clustering validation

techniques. Journal of Intelligent Information Systems 17, 2-3 (Dec), 107–145.

[Hammersley et al. 1965] HAMMERSLEY, J. M., HANDSCOMB, D. C., AND WEISS, G. 1965. Monte Carlo

methods. Physics Today 18, 55.

[Hartigan and Wong 1979] HARTIGAN, J. A. AND WONG, M. A. 1979. Algorithm as 136: A k-means clustering

algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics) 28, 1, 100–108.

[Jaccard 1901] JACCARD, P. 1901. Distribution de la flore alpine dans le bassin des Dranses et dans quelques

régions voisines. Bulletin de la Société Vaudoise des Sciences Naturelles 37, 241–272.

[Kanungo et al. 2002] KANUNGO, T., MOUNT, D., NETANYAHU, N., PIATKO, C., SILVERMAN, R., AND

WU, A. 2002. An efficient k-means clustering algorithm: analysis and implementation. IEEE Transactions on Pattern

Analysis and Machine Intelligence Vol. 24, No. 7, 881–892.

[Knuth 2006] KNUTH, D. E. 2006. The art of computer programming. 4, fascicle 4, 1. print.. Generating all trees.

Addison-Wesley.

[Koontz et al. 1975] KOONTZ, W. L. G., NARENDRA, P. M., AND FUKUNAGA , K. 1975. A Branch and Bound

Clustering Algorithm. IEEE Transactions on Computers C-24, 9, 908–915.

[Kyriakopoulou and Kalamboukis 2008] KYRIAKOPOULOU, A. AND KALAMBOUKIS, T. 2008. Combining

Clustering with Classification for Spam Detection in Social Bookmarking Systems. In Proceedings of European

Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases Discovery

Challenge. ECML/PKDD RSDC ’08. 47–54.

[Levchenko et al. 2011] LEVCHENKO, K., PITSILLIDIS, A., CHACHRA, N., ENRIGHT, B., HALVORSON, T.,

KANICH, C., KREIBICH, C., LIU, H., MC COY, D., WEAVER, N., PAXSON, V., VOELKER, G. M., AND

SAVAGE, S. 2011. Click trajectories: End-to-end analysis of the spam value chain. In Proceedings of The IEEE

Symposium on Security & Privacy. 431–446.

[Levenshtein 1966] LEVENSHTEIN, V. I. 1966. Binary codes capable of correcting deletions, insertions and

reversals. Soviet Physics Doklady. 10, 8 (Feb), 707–710.

[Matsumoto and Nishimura 1998] MATSUMOTO, M. AND NISHIMURA, T. 1998. Mersenne twister: a 623-

dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and

Computer Simulation (TOMACS) - Special issue on uniform random number generation 8, 1 (Jan), 3–30.

[Moore et al. 2009] MOORE, T., CLAYTON , R., AND ANDERSON, R. 2009. The economics of online crime. The

Journal of Economic Perspectives 23, 3, 3–20.

[Nagwani and Bhansali 2010] NAGWANI, N. K. AND BHANSALI, A. 2010. An Email Clustering Model Using

Weighted Similarities between Emails Attributes. International Journal of Research and Reviews in Computer Science

(IJRRCS) 1, 2.

[Nhung and Phuong 2007] NHUNG, N. P. AND PHUONG, T. M. 2007. An efficient method for filtering image-

based spam e-mail. In Proceedings of The 12th international conference on Computer analysis of images and patterns.

CAIP’07. Springer-Verlag, Berlin, Heidelberg, 945–953.

[Ono et al. 2007] ONO, K., KAWAISHI, I., AND KAMON, T. 2007. Trend of Botnet Activities. In Proceedings of

The 41st Annual IEEE International Carnahan Conference on Security Technology. ICCST ’07. 243–249.

[Ramachandran et al. 2007] RAMACHANDRAN, A., FEAMSTER, N., AND VEMPALA , S. 2007. Filtering spam

with behavioral blacklisting. In Proceedings of The 14th ACM Conference on Computer and Communications

Security. CCS ’07. ACM, New York, NY, USA, 342–351.

[Sasaki and Shinnou 2005] SASAKI, M. AND SHINNOU, H. 2005. Spam detection using text clustering. In

Proceedings of The International Conference on Cyberworlds. Vol. Vol. 4. 4 pp.–319.

[Thomas et al. 2011] THOMAS, K., GRIER, C., MA , J., PAXSON , V., AND SONG, D. 2011. Design and

evaluation of a real-time url spam filtering service. In Proceedings of The 2011 IEEE Symposium on Security and

Privacy. S&P ’11. IEEE, 447–462.

[UAB-CIS 2013] UAB-CIS. 2013. Department of CIS, University of Alabama at Birmingham, UAB Spam Data

Mine. Online at http://www.cis.uab.edu/UABSpamDataMine.

[Vitter 1985] VITTER, J. S. 1985. Random sampling with a reservoir. ACM Transactions on Mathematical Software

(TOMS) 11, 1 (Mar), 37–57.

[Wei 2010] WEI, C. 2010. Clustering Spam Domains and Hosts: Anti-Spam Forensics with Data Mining. Ph.D.

thesis, University of Alabama at Birmingham.

[Wei et al. 2009] WEI, C., SPRAGUE, A., AND WARNER, G. 2009. Clustering malware-generated spam emails

with a novel fuzzy string matching algorithm. In Proceedings of the 2009 ACM symposium on Applied Computing.

SAC ’09. ACM, New York, NY, USA, 889–890.

[Ying et al. 2010] YING, W., KAI , Y., AND JIAN ZHONG , Z. 2010. Using DBSCAN clustering algorithm in spam

identifying. In Proceedings of The 2nd International Conference on Education Technology and Computer. ICETC ’10,

vol. 1. V1–398–V1–402.

