
HOT ZONE IDENTIFICATION: 

ANALYZING EFFECTS OF DATA SAMPLING ON SPAM 

CLUSTERING 
 

Rasib Khan, Mainul Mizan, Ragib Hasan, Alan Sprague 

Department of Computer and Information Sciences 

University of Alabama at Birmingham, AL, USA  

 115A Campbell Hall, 1300 University Boulevard 

Birmingham, Alabama 35294-1170 

Phone: 205.934.8643, Fax: 205.934.5473 

{rasib, mainul, sprague, ragib}@cis.uab.edu 

 

ABSTRACT 

Email is the most common and comparatively the most efficient means of exchanging information in 

today's world. However, given the widespread use of emails in all sectors, they have been the target of 

spammers since the beginning. Filtering spam emails has now led to critical actions such as forensic 

activities based on mining spam email. The data mine for spam emails at the University of Alabama at 

Birmingham is considered to be one of the most prominent resources for mining and identifying spam 

sources. It is a widely researched repository used by researchers from different global organizations. The 

usual process of mining the spam data involves going through every email in the data mine and clustering 

them based on their different attributes. However, given the size of the data mine, it takes an exceptionally 

long time to execute the clustering mechanism each time. In this paper, we have illustrated sampling as an 

efficient tool for data reduction, while preserving the information within the clusters, which would thus 

allow the spam forensic experts to quickly and effectively identify the ‘hot zone’ from the spam campaigns. 

We have provided detailed comparative analysis of the quality of the clusters after sampling, the overall 

distribution of clusters on the spam data, and timing measurements for our sampling approach. 

Additionally, we present different strategies which allowed us to optimize the sampling process using data-

preprocessing and using the database engine's computational resources, and thus improving the 

performance of the clustering process. 

Keywords: Clustering, Data mining, Monte-Carlo Sampler, Sampling, Spam, Step Sequence Sampler, 

Stepping Random Sampler, Hot Zone 

1. INTRODUCTION 

Advancement of the IT infrastructure significantly affects the way people communicate. Social interaction 

and information exchange are highly dependent on emails and other such forms of media. At the same time, 

such medium of communication has been the target of misuse since the beginning. Thus, the negative 

motives from spammers have been a serious issue, which have led to phishing, viruses, malware bots, and 

other such attacks. 

Spam emails are mostly generated by malware bots on different computers across the Internet. However, 

malwares installed by the same spammer exhibit a specific pattern in the spam emails [Nhung and Phuong 

2007, Ying et al. 2010]. The content of the spam is usually generated using a common template. Therefore, 

the identification of the pattern in these spam emails is significantly important to IT forensic experts. The 

identified pattern can then help identify a specific spammer and follow through with proper investigations 

[Ono et al. 2007, Dagon et al. 2007]. Mining spam emails helps discover and correlate useful patterns. Most 

of the mining techniques are text-based, given that such spam emails are mostly text-oriented. Once the 

emails are scrutinized for such patterns, different clustering techniques and algorithms can be applied over 

the email data to group the spams based on some similarity criteria. The speed of producing faster clusters 



from large datasets depends on efficient algorithms. However, in case of very large datasets, it might be 

required to reduce the size of the data prior to the clustering process. 

In this paper, we focus on the evaluation of clustering performed on sampled spam emails. The data used is 

from the Spam Data Mine at the University of Alabama at Birmingham (UAB) [UAB-CIS 2013]. The UAB 

Spam Data Mine is a large and widely researched repository for spam emails, and is used as a helpful 

resource by researchers from different global organizations. Given the huge number of spam emails 

collected every day, the clustering of the spams take a long time. However, in this work, instead of focusing 

on algorithms to optimize the clustering process, we considered sampling the dataset prior to fetching it to 

clustering algorithms. Once we are able to prove sampling as an efficient and applicable solution for data 

reduction, we believe appropriate clustering algorithms can be applied accordingly. We have adopted the 

previous work done by Chun Wei et al. to create the clusters based on patterns in the subject header of the 

spam emails [Wei et al. 2009]. 

In this work, we have utilized four simple methods of sampling that we have applied on the spam data from 

the data mine. As a result, we aim in making the process of clustering more efficient and less time 

consuming. Furthermore, we provide the results to illustrate that the sampled data from the UAB Spam 

Data Mine preserves the information contained for forming clusters and highlight the ‘hot zone’.  In this 

context, we refer to ‘hot zone’ as the most prominent clusters with respect to spamming activities. We have 

presented the results in order to support our claim of using sampled spam data to allow investigators a faster 

and better opportunity to identify the ‘hot zone’ in spam clusters. We illustrated the resulting clusters from 

the sampled data, and performed extensive comparative analysis with the clusters formed using the whole 

data set.  Our evaluation includes an analysis of the data distribution on the spam data, and also the time 

measurements for the different operations in the algorithm. The paper also includes a different approach to 

optimize the sampling process, utilizing the efficiency of the database engine, which allowed us to enhance 

the resulting performance of the required time. 

Contributions: The contributions in this paper are as follows: 

 We evaluate the sampling methods on actual spam emails from the UAB Spam Data Mine. The 

validation and effectiveness of sampling is based on the following: (a) quality of the clusters produced, 

(b) the data cover/distribution of spam emails within the data mine, and (c) the timing performance for 

the clustering operation. All the sampling models have been validated for varying sampling rates 

against the clusters created using the complete data set. Our results show that we are successfully able 

to highlight the ‘hot zone’ from the spam emails with a significant improvement in timing performance. 

 

 We present techniques and strategies for the most efficient way to implement the sampling process and 

retrieve the huge number of spam emails from the data mine, which are then used to execute the 

clustering algorithm. The experimental measurements using our optimization strategies illustrate that 

there are further improvements in performance, compared to naïve SQL query based retrieval of 

sampled spam records from the UAB Spam Data Mine. 

The rest of the paper is organized as follows. The motivation for the work is presented in Section 2. Section 

3 describes the organization of the UAB Spam Data Mine, including the clustering algorithm from the work 

of Chun Wei et al. [Wei et al. 2009]. The different sampling models are described in Section 4. The results 

and corresponding analysis are presented in Section 5. Section 6 includes the optimization strategies to 

improve the efficiency of the sampling process. Finally the related works and conclusion are presented in 

Section 7 and Section 8 respectively. 

2. RESEARCH MOTIVATION 

The increasing number of Internet users has attracted criminals to the field of online crimes. eCrimes have 

been significantly on the rise since the last few years. This section illustrates the issue of eCrimes on the 

Internet, and the research motivation behind the work on investigating spam clusters, and the importance of 

identifying the hot zone. 



2.1. eCrimes on the Internet 

Information security and economics have become interdependent in recent times. Corporations employ 

information security specialists, as well as economists and lawyers to deal with the rising concern of 

eCrimes. The network of criminal activities has become more organized with structured online black 

markets, where the criminals trade insider information. Data and information, such as credit card and PIN 

codes, are sold to online anonymous brokers in these underground eCrime markets. According to Moore et 

al. [Moore et al. 2009], credit card information are sold at advertised prices of $0.40 to $20.00 per card, and 

bank account credentials at $10 to $100 per bank account. Social security numbers and other personal 

details are sold for $1 to $15 per person, while online auction credentials fetches around $1 to $8 per 

identity. Subsequently, the brokers sell the information to specific expert hackers, who perform the final act 

of money laundering. 

The information collected in these online criminal activities incorporate specialized approaches. Usually, 

Internet users are driven to false websites with the help of advertising emails. These bulk emails are 

generally classified as spams, which are sent by spammers, using malicious software running on infected 

machines. The infected computers are used by the spammers to record keystrokes and send further spam 

emails.  

The monetizing channel for spam emails includes multiple organizations. It is illustrated by Levchenko et 

al. [Levchenko et al. 2011], the spam value chain has multiple links between the money handling authorities 

and the spammers. Furthermore, according to an approximate consensus, 5% of online devices on the 

Internet are susceptible to being infected with malware. At least 10 million personal computers have been 

assumed to be infected with malware in 2008, the number for which should have had increased significantly 

over the last few years [Moore et al. 2009]. Thus, these figures easily indicate that the network for criminal 

activities have outgrown the authorities dealing with eCrimes.  

2.2. Spam Investigation 

Spam emails are perceived as being analogous to junk mails. These emails are generally advertising emails, 

or with other forms of undesired content. However, spam emails are not as innocent as junk mails. They are 

sent to a large number of recipients, and usually have hidden motives along with the content of the email. 

They are considered as the primary channel for attackers to deploy Trojans, worms, viruses, spyware, and 

botnets on other machines across the Internet. 

The email body of spams has hidden scripts, cookies, and other attached content to attract the recipient of 

the email. Once the user opens the email, the scripts may use the current information from the browser to 

expose the identity of the user to the attacker. This is the easiest and a very well-known approach, but still 

the most common scenario where users are victims of identity thefts on the Internet. This information can 

be used to remotely access the user's machine and install unwanted malwares as botnets. The malware can 

then operate from the infected machine using the identity of the user, and send further spam emails or 

perform other unwanted tasks. 

When an attacker sends a spam, he generally uses a template to generate the content of the email. The 

format of the content is thus prevalent in all the spam emails those are being sent. However, the spammers 

replace some words or phrases to introduce variation and hence bypass the spam filters. Thus, it becomes a 

non-trivial task for such filtering services to detect all the spam. Data mining from spam emails is useful to 

detect and investigate these patterns. The spam emails are scrutinized and parsed into different text-based 

segments. Each email comprises of certain attributes, such as the sender email, subject header, and the mail 

body. These individual attributes can be investigated to match other spam emails, and thus grouping similar 

spam emails. Once a pattern is observed, they can be clustered and classified as a specific spam campaign 

[UAB-CIS 2013, Caruana and Li 2008, Kyriakopoulou and Kalamboukis 2008, Sasaki and Shinnou 2005, 

Ying et al. 2010, Wei et al. 2009]. The individual clusters obtained from grouping spam emails allow the 

eCrime investigators to identify a particular spammer. The clustered spams are examined to classify the 

spammer and obtain further track-down information. eCrime investigators use these collected data to hunt 

down online criminals and take appropriate actions against the involved personnel. 



The Spam Data Mine at UAB collects approximately 1 million spam emails each day [UAB-CIS 2013]. 

The spam emails can then be used to find the patterns and perform clustering on the collected data. The 

identified clusters are assumed to be individual spam campaigns by an attacker. The extracted patterns from 

the spam emails are dependent on the template used by the spammer to generate the spam. However, it 

should also be noted that an attacker generally uses a given spam template for a few days, after which he 

changes the format of the emails. This constant change in the format of the spams makes it difficult to 

identify a particular attacker. As a result, spam emails collected over a small duration of time exhibits the 

specific pattern, after which the extracted cluster information does not apply any more.  

From the above scenario, we have observed the following requirements for investigating eCrimes using 

spam clusters. First, it is important that the identification of the spam campaigns should be done as early as 

possible. The multitude of financial loss resulting from eCrimes requires the investigation to proceed 

quickly. The sooner a particular spam campaign is taken down, the lesser is the financial loss. A quick 

action against a spam campaign would also mean that lesser people will fall as victims to the campaign on 

the Internet. However, given the huge amount of data, it requires a lot of time to execute the clustering 

operation. Thus, the inherent requirement to act quickly against such eCrimes is not fulfilled with the 

current approaches for clustering spam emails. Moreover, the quickly changing pattern of templates by the 

spammers makes it more difficult to extract the information from the spams and act on it accordingly. 

Second, the ‘hot zone’ of the spam campaigns are the ones about which conclusive remarks can be made 

about an attacker. Here, we refer ‘hot zone’ as the group of largest clusters and the most prominent spam 

campaigns on the Internet. The largest spam clusters imply a large number of similar spam emails. As a 

result, the larger clusters incorporate more information for the eCrime investigators and law enforcement 

authorities to study the criminals. It is more important to identify the largest clusters rather than obtaining 

an extensive number of clusters for the huge amount of spam from the data mine. It might not be the same 

scenario when it comes to user privacy protection and spam filters on web browsers and email clients, 

where more fine-grained spam filtering is required to protect the users on the Internet. Therefore, when it 

comes to criminal investigations and law enforcement, the prominent clusters are the ones of interest, while 

the smaller ones can be classified as outliers. 

3. CLUSTERING SPAM DATA 

For our work in this paper, we have adopted an existing clustering algorithm proposed by Chun Wei [Wei 

2010] and Chun Wei et al. [Wei et al. 2009]. The algorithm has been executed using data from the UAB 

Spam Data Mine [UAB-CIS 2013]. In this section, we discuss the background and the description of the 

data mine, including the clustering technique proposed by Chun Wei et al. on the spam data [Wei 2010, 

Wei et al. 2009]. 

3.1. Background 

The initial research issue for knowledge extraction or data mining is classifying data and creating 

representations of the feature space. Clustering is most commonly used for feature compression and 

extracting information [Kyriakopoulou and Kalamboukis 2008]. Specific features are compared and 

clustered into groups which represent a commonality among all of its data items. The task of measuring the 

similarity of data items can be performed in different ways. The most common methods for measuring 

similarity/dissimilarity are Jaccard and Levenshtein coefficients [Jaccard 1901, Levenshtein 1966]. The 

distances can then be used in other clustering algorithms to create and evaluate clusters [Kanungo et al. 

2002, Hartigan and Wong 1979, Ying et al. 2010, Wei 2010, Caruana and Li 2008]. The clustering 

algorithms thus use the similarity or dissimilarity of individual data items based on the feature space, and 

group them into a common cluster based on preset threshold configurations. 

3.2. The Spam Data Mine 

We utilized the UAB Spam Data Mine [UAB-CIS 2013] for the purpose of our research evaluation. The 

UAB Spam Data Mine is a research project under The Center for Information Assurance and Joint 



Forensics Research (CIS-JFR)
1
. The Center generates information about currently on-going campaigns by 

spammers. It archives spam emails received from numerous sources and honey-pots, and collects 

approximately 1 million spam emails each day. 

The collection of spam emails from the sources is collected in a batch-wise operation. General users on the 

Internet, upon receiving a (suspected) spam email, marks the email as spam, and forwards it to the honey-

pot email address for archiving. Additionally, numerous other honey-pots are placed at different points in 

the network which dedicatedly receive and archive spam emails. The archived spam emails are collected 

batch-wise at specific time intervals during the day. Thus, due to the manner these spam emails are stored 

and collected in the data mine, the records do not display a shuffled organization in their sequence. 

Subsequently, the spam data mine stores the data regarding spam emails parsed into different attributes. The 

current database design holds the following attributes for each spam email: message_id, subject, 

sender_name, sender_username, sender_domain, sender_ip, receiving_date, time_stamp, word_count. 

3.3. Algorithm for Clustering 

The method employed by Chun Wei et al. [Wei et al. 2009] for clustering the spam data is specific to the 

data from the UAB Spam Data Mine [UAB-CIS 2013]. In this section, we present the clustering algorithm 

designed and implemented by Chun Wei et al. [Wei et al. 2009] and also included as a part of the work in 
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Algorithm  1 : The ‘Fast-n-Dirty’ Spam Clustering Algorithm by Chun Wei et al. [26] 

 
1:  Function Clustering-ChunWei { 

2:       Initialize Cluster-list as empty 

3:       Connect to DB : Load spam data 

4:       For each spam record X: 

5:             X-sender-hash = MD5-hash(X.sender_username) 

6:             For each spam record Y: 

7:                  Y-sender-hash = MD5-hash(Y.sender_username) 

8:                  If (X-sender-hash = Y-sender-hash), then: 

9:                       C = Cluster(X, Y) 

10:                       Add C to Cluster-list 

11:       Calculate Mean-cluster-dist for Cluster-list 

12:       Calculate Std-dev-cluster-dist for Cluster-list 

13:       Threshold = (Mean-cluster-dist + (4 * Std-dev-cluster-dist)) 

14:       For each cluster C in Cluster-list: 

15:             If (C.Cluster-dist < Threshold), then: 

16:                  Remove C from Cluster-list 

17:                  Add C to Small-clusters-list 

18:       For each cluster CX in Small-clusters-list: 

19:             For each cluster CY in Small-clusters-list: 

20:                  If (CX.word count = CY.word count), then: 

21:                       C = Cluster(CX, CY) 

22:                       Add C to Cluster-list 

23:       Calculate Mean-cluster-dist for Cluster-list 

24:       Calculate Std-dev-cluster-dist for Cluster-list 

25:       Threshold = (Mean-cluster-dist + (4 * Std-dev-cluster-dist)) 

26:       For each cluster C in Cluster-list: 

27:             If (C.Cluster-dist < Threshold), then: 

28:                  Remove C from Cluster-list 

29:             Else: 

30:                  Generate Subject-pattern using Leveshtein match 

31:                  Add Subject-pattern to C 

32:       Publish Cluster-list 

33:  }; 



[Wei 2010]. For our purpose, we chose the rather ‘fast-n-dirty’ version of the clustering algorithm by Chun 

Wei, which is shown in Algorithm 1. The clustering algorithm matched spam emails on exact similarity of 

sender email addresses. They are matched using the MD5 hash of the sender's email. Similar items were 

clustered into a common group. From within the clusters, some of them are set aside using a bounded 

threshold, which was set at a minimum of [mean + (4*standard deviation)].  

Next, the process was repeated for the word_count of the email body for all the small clusters, and further 

clusters were created. As a result, some of the clusters had both the sender_name and the word_count in the 

feature space, while some only had the word_count criteria. Finally, a Levenstein index is calculated to 

create a common pattern for the subject header for each of the clusters. The output patterns of subject 

headers for the spam emails are produced in the form ‘__ similar __ word’. Here, the blank spaces are the 

words which could be substituted for other words. The blank spaces together with the words ‘similar’ and 

‘word’ define the basic template of the subject headers for each of the clusters of similar spam emails. 

 

4. SPAM DATA SAMPLING 

Sampling is a well-known technique for data reduction, given that it preserves the information from the 

original data set. In this section, we present our approaches to create the sampled data. We have presented 

four different schemes for creating the sampled data, which have been discussed in the following sections. 

For each of the models, we invoke the sampling method with the begin index, end index, and sampling rate 

parameters. 

4.1. Simple Random Sampler 

The simple random sampler is implemented using the Java Random class
2
. The Java Random class 

initializes using a 48-bit long random seed. Subsequently, it is modified using a linear congruential formula 

to generate a stream of pseudo-random numbers [Knuth 2006]. Alternatively, Mersenne Twister is another 

method for polynomial calculations over two-element fields to generate uniform pseudo-random numbers 

[Matsumoto and Nishimura 1998]. However, our random generator uses the linear congruential formula due 

to the simplicity of the model, and serves the purpose of our work. 

The simple random sampler takes in a range of values within a begin/end index for message_ids. 

Subsequently, it generates the random indexes within the given range, according to the desired sampling 

rate. However, the generated random indexes may or may not be evenly distributed across the range of 

values for the message_ids. 

4.2. Step Sequence Sampler 

The step sequence sampler is another method of sampling which we utilized for our spam data. As shown in 

Figure 1a, given the sampling rate r, we initially calculated the step frequency f. The range of values for the 

message_ids is then divided into f-segments, and the boundary index values are returned as the sampled 

indexes. As a result, the obtained sampled data is evenly distributed, and sequentially selected from the data 

set. 
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Figure 1: Sampling Methods: Step Sequence Sampler (SSS), Stepping Random Sampler (SRS), and Monte 

Carlo Sampler (MCS) 



4.3. Stepping Random Sampler 

The stepping random sampler is an extension of the step sequence sampler, as shown in Figure 1b. As 

before, we calculated the step frequency f for the given range of message_ids based on the sampling rate. 

After that, we utilized the Java Random class to randomly select an index from within each block. Thus, the 

sampled index values for the message_ids are evenly distributed with the frequency f, and randomized 

within each blocked segment, thus ensuring unbiased results. 

4.4. Monte Carlo Sampler 

Monte Carlo methods refer to computational algorithms which are based on repeated random sampling to 

obtain a desired goal. It is a process of calculating heuristic probability for a given scenario which is 

defined by the specific validation of a success or fail event [Hammersley et al. 1965]. In our case, we 

designed a simple Monte Carlo sampler to probabilistically generate some random indexes for choosing the 

sampled message_ids, as illustrated in Figure 1c, and presented in Algorithm 2.  

In the Monte Carlo sampler, for each index i, where i is between begin and end, we ‘roll’ between 0 -100. If 

the random ‘roll’ is less than or equal to the sampling rate r, we select the specific index i. Thus, the 

sampled indexes are sequentially selected or discarded from within the range of begin and end indexes for 

message_ids. However, the number of index values that we receive from the Monte Carlo sampler is not 

exact, but probabilistically close to match the sampling rate r. The success or fail events in Monte Carlo 

models are usually executed for a large number of events. Therefore, according to the model, the larger the 

range of message_ids, the closer we get to the desired value for the number of sampled items [Hammersley 

et al. 1965]. 

4.5. Comparison of Sampling Methods 

The properties of the different sampling methods are summarized in Table 1. In this context, we define the 

following properties for the different sampling methods. 

i. Randomness in the sampling process implies the probability of a particular index being chosen in 

the sample. 

ii. Sequential sampling refers to the criteria of the chosen indexes being in order once the sampling 

process has completed. 

iii. Repetition in sampling means the possibility of an index being chosen more than once. 

iv. Data cover represents the feature of the chosen sampled indexes being evenly distributed over the 

range of values from the original data set. 

v. Number of samples refers to the number of indexes chosen, given the total number of indexes n, 

and the sampling rate r. 

As shown in Table 1, the simple random sampler provides good randomness, as it depends on a simple 

linear congruential formula to generate the pseudo-random number stream. However, it is not sequential, as 

the chosen index samples are generated at random, and does not preserve order. Additionally, the simple 

random sampler does not guarantee uniqueness, as the same number can be generated more than once. 

Therefore, the already mentioned properties can be utilized to state that the simple random sampler does not 

provide a guaranteed data cover either. The step sequence sampler does not provide any randomness and is 

Algorithm  2 : The Monte Carlo Sampler 

 
1:  function Monte-Carlo-Sampling(Start, End, Sampling-rate) { 

2:       Initialize Sampled-index-list as empty 

3:       For index I, where I from Start to End: 

4:             Rand = Generate-random-number(1 to 100) 

5:             If {Rand <= Sampling-rate}, then: 

6:                  Add I to Sampled-index-list 

7:       Return Sampled-index-list 

8:  }; 



purely sequential. However, we are able to ensure no repetition and full data cover. Using the stepping 

random sampler allows mediocre randomness, but contains sequence, ensures uniqueness, and also provides 

a full data cover. Finally, the Monte Carlo method provides good randomness and ensures sequentiality 

with no repetition. However, it has a probabilistic sample size of approximately (n*r), where n is the data 

size and r is the sampling rate. The probability of the sample size will get closer to (n*r) with a greater 

range of values for the indexes. 

5. RESULTS AND ANALYSIS 

In this section, we present the results obtained from the different sampling methods presented previously. 

The sampled data were mined and used to create clusters, based on the algorithm of Chun Wei et al. [Ying 

et al. 2010, Wei 2010]. We also provide an analysis of the results and comparison of each of the sampling 

methods against clustering performed on the full data set. The results presented have been generated using 

two days' spam data. As mentioned earlier, the data mine collects a huge number of spam emails, and there 

were a total of approximately 1.8 million spam emails in these two days. 

5.1. Clustering Quality 

Initially, we performed the clustering on the whole spam data for a range of two days. With the clusters 

formed, we selected the ten largest clusters and analyzed their statistics. We recorded the number of data 

points, pattern of the subject within the cluster, and the percentage of data that each of the clusters has with 

respect to the data size. We refer to clustering factor as the value between 0 and 1, which represents the size 

of the cluster in terms of the size of the data. The rightmost bar on Figure 2 shows the distribution of the 

clusters which were created from complete data set for the given range of days. It can be seen that the ten 

largest clusters actually represent almost 25% of the whole data set, with three largest clusters representing 

approximately 9%, 8%, and 3% respectively. 

Next, we executed the clustering algorithm on sampled data with each of our samplers. The sampling was 

performed at varying rates of 1%, 2%, 3%, 5%, and 8% respectively. For each of the cases, we analyzed the 

clusters created with the sampled data. To visualize the clustering quality with better understanding, we 

normalized each of the sampled clusters using the size of the sample to calculate the clustering factor for 

each. Using a normalized view for the sampled clusters thus makes it easier to evaluate the quality of the 

clustering with respect to the clusters formed using the full data set. The clustering factor for each of the 

sampling methods at varying sampling rates is illustrated in Figure 2. 

From the results, it can be seen that random sampling, step sequence, and stepping random create the 

clusters with a similar clustering factor as that of the full data set. Thus, the more similar the clustering 

factors and distributions are, the better they can be claimed to have performed. It should also be noted that 

all the three sampling methods perform in a stable manner with their varying sampling rates. Additionally, 

we verified that each of the ten largest clusters from the sampled data actually coincides with at least eight 

of the largest clusters from the full dataset. However, they might sometimes be slightly out of order in the 

sampled cluster sizes. Moreover, the top three to five clusters as shown in Figure 2 is always the same 

clusters in all the cases, which verifies that the sampling effectively allows us to identify the ‘hot zone’ of 

spam campaigns. Table 2 describes the patterns of subject headers for each of the top ten clusters created in 

order of their sizes. It can be seen that most of the clusters created from the 2% step sequence sampling are 

 RS SSS SRS MCS 

Randomness good bad med good 

Sequential no yes yes yes 

Repetition maybe no no no 

Data cover maybe yes yes maybe 

Number of samples n*r n*r n*r ≈ n*r 

Table 1: Comparison of properties for the Random Sampler (RS), Step Sequence Sampler (SSS), Stepping Random 

Sampler (SRS), and the Monte Carlo Sampler (MCS) 

 



exactly in the same order if compared to the clusters created using the full data set. However, there are 

minor interchanges in the position of the clusters in their ordering. Nonetheless, they are not the top 

clusters, and are usually of similar sizes and hence tend to swap places with minor changes in the order. 

However, with the Monte Carlo sampler, it can be seen that the sampled data had some skewness towards 

the clustering data points. This can be claimed as both positive and negative. Given that the results tend to 

have a greater clustering factor for the larger clusters and represent almost 45% of the sampled data, it can 

be argued that Monte Carlo sampling makes it easier to focus on the largest clusters. However, they tend to 

distort the actual distribution of clusters and misrepresent the clustering factor for each of the clusters 

compared to the full data. An interesting convergence towards the desired clustering factor distribution can 

be seen as the sampling rate is increased. 

Therefore, from the clusters created and the clustering factors, we are able to infer the effect of the different 

sampling methods. It can be seen that random, step sequence, and stepping random sampling tends to 

preserve the distribution of the original data set of spams. Therefore, we can say that the sampling models 

for the above three are representative sampling. On the other hand, Monte Carlo seems to perform well in 

highlighting larger clusters and removing noise from smaller clusters. Hence, we call it noise suppressive 

sampling. Given the context and the requirement, each of the sampling methods can be utilized accordingly. 

5.2. Data Cover 

We utilized the clusters created from our experiments to analyze the distribution of the data in the spam 

data mine. We are interested to visualize how the spam emails have been archived in the data mine, with 

respect to the cluster each spam email belongs to. In this context, data cover refers to the distribution of the 

spam emails in the data set. 

Figure 3 illustrates the graph to help visualize the distribution for the complete dataset. The x-axis 

corresponds to the total number of message_ids for the given date. The y-axis specifies the number of spam 

emails in the cluster to which the corresponding message_id belongs to. The colored lines are formed by 

very closely placed data points, and each of the colors represents a different cluster. 

We also present the data cover graphs generated from the clusters created using the four different sampling 

methods, shown in Figures 4, 5, 6 and 7 respectively. The sampled graphs have been produced only for a 

sampling rate of 2%, which is sufficient to prove the effectiveness of sampling. It can be seen that each of 

the sampling methods have been equally capable to successfully identify the same top clusters which have 

been created by the complete data set. Additionally, it can be seen that most items which belong to the same 

cluster reside closely in the data set. This observation is useful in asserting the fact that sampling the data 

which preserves the sequentiality is also able to preserve the representation of the dataset. 

An interesting observation is the comparison of tailing or sparse data from Figure 3 compared to any of the 

other Figures 4, 5, 6, and 7. All the sampling methods have nicely cleaned the scattered data points.  

No. Clustering on full data  set Clustering  using 2% Step Sequence 

1 Canadian Pharmacy: BUY NOW VIAGRA & CIALIS ! Canadian Pharmacy: BUY NOW VIAGRA & CIALIS ! 

2 New prices New prices 

3 Lowest prices Lowest prices 

4    Vigara Now       Vigara    =    

5    Vigara       Vigara Now    

6 Corporate eFax message -   pages Corporate eFax message -   pages 

7    Vigara   SALE! United Parcel Service notification    

8 United Parcel Service notification       Vigara    

9 Vigara Now       Vigara =    

10    Vigara   Off! Purchase your Levitra from one of our drugstores today. 

Levitra/Viagr/Cialis from $1.25    

Table 2: Subject Header Patterns of Ten Largest Clusters Compared using Full Dataset Vs. 2% Sampled Data 



 

Figure 4: Spam Distribution based on Clusters for Simple 

Random 2% Sampling 
Figure 5: Spam Distribution based on Clusters for Step 

Sequence 2% Sampling 

Figure 6: Spam Distribution based on Clusters for Stepping 

Random 2% Sampling 
Figure 7: Spam Distribution based on Clusters for Monte 

Carlo 2% Sampling 

Figure 2: Clustering Factor for Ten Largest Clusters Figure 3: Spam Distribution based on Clusters for 

Complete Dataset 



However, the sampled data for step sequence sampler and Monte Carlo sampler (Figure 5 and 7) still shows 

some minor traces of the existence of the scattered data in comparison to the original data. In all the cases, 

the leveling clusters at the bottom are cluttered together. However, these are the smaller clusters and do not 

play any interesting role in the identification of the ‘hot zone’. 

Thus, Figures 3, 4, 5, 6, and 7 illustrates the way the data set is organized. This can lead us to generalize a 

pattern of arrivals of spam emails into the archive. Additionally, such a pattern of data arrival strengthens 

ours claim of sampling being sufficient and effective to preserve the characteristics of the dataset and the 

largest clusters from the spam emails in the data mine.  

5.3. Timing Performance 

Here, we present the timing performance enhancement from mining and clustering the sampled data 

compared to using the whole dataset. The database was deployed on a x86 64-bit machine, using Intel 2.4 

Ghz processor, with 6 processing cores and 12 GB RAM. Additionally, we executed the Java program to 

perform the clustering on the same machine. Hence, all timing measurements have been recorded based on 

the corresponding execution times. Figure 8 illustrates the timing measurements from the different sampling 

rates, including the timing for the complete data set. 

The mean time required for loading the data from the database is 4261 milliseconds, and is depicted by the 

lower block in the timing bars in Figure 8. The loading time of the data is almost constant for all cases. This 

is because the query executed on the database from the application requests for the complete dataset for the 

specified day(s). Once the data is received, the application then performs an application level filtering of the 

data, by either selecting or discarding the item, based on the sampled indexes generated separately. Thus, 

given that the machine executing the program had sufficient main memory, the task of on-memory filtering 

of the data was performed within a very short time.  

The interesting measurement to be noticed is the upper segment in Figure 8, which corresponds to the 

processing time required for each of the cases of reduced data size using varying sampling rates. Once the 

data have been loaded and sampled, the clustering algorithm [Ying et al. 2010, Wei 2010] creates the 

clusters based on the given data. It can be distinctively seen that the time required for the whole data set is 

very high, compared to the sampled data clustering. Additionally, the algorithm adapted from Chun Wei et. 

al.'s work is the simple and faster version, which still is significantly high compared to the measurements 

obtained for the sampled data. The increase in time required with increasing sampling rate is not exactly 

linear, but not quadratic either. Thus, the reduction in the amount of time to perform a whole data set 

clustering can be reduced by a factor greater than linear if a sampled data set is used. 

 

Figure 8: Timing Performance for Application Level 

Filtering 
Figure 9: Timing Performance for Database Filtering 

using Naive SQL Query 



6. SAMPLING OPTIMIZATION 

For further research, we explored some strategies to optimize the process of sampling. In our opinion, the 

timing performance of sampling can be improved if we are able to perform the operation on the database 

engine. The following sections illustrate our process of investigation and the methods we adopted to fulfill 

the requirements. 

6.1. Data Preprocessing 

Given the huge number of spam emails gathered every day, reading the data items from the database 

required a significant amount of time. In the clustering implementation by Chun Wei et. al. [Wei et al. 

2009], they performed a read operation on the whole data for a specific date. As a result, this incurred to a 

huge number of read operations on the database server. 

We performed some initial data preprocessing to reduce the number of read operations while retrieving the 

data items from the database. We created a new table, namely daily_index, with fields receiving_date and 

message_id. The table was populated using the minimum values for the message_id for each date from the 

spam table. With the daily_index table created, we can now easily retrieve the range of values for 

message_id for the given dates for which we will perform the clustering. For each sampling method, we 

initially provide the message_id range, get the sampled indexes, and subsequently, retrieve only the 

required data items from the database based on the desired sampling rate r. As a result of this operation, we 

are able to save [n-(n*r/100)] read operations from the database; where n is the total number of records for 

the given date. 

6.2. Naïve SQL Query 

The initial time measurements were taken based on an application level filtering for the sampling process. 

On the contrary, with the data pre-processing and the daily_index table created, we initially generated 

indexes for the sampled message_ids. Subsequently, we queried the database with a long matching clause 

of the sampled message_ids to retrieve the required rows. However, in this form of queries, we failed to 

improve the timing requirement. The size of the query was itself very large, and the database took a very 

long time to select and load the sampled records. The measurements from the naïve SQL query are 

illustrated in Figure 9. It can be seen clearly that even though the processing time is reduced, the sampling 

queries take an exceptionally long time to load the sampled data. Thus, as we failed to improve the 

performance using the naïve SQL query, we investigated further options to optimize the sampling process.  

6.3. Cross-Product with Temporary Table 

Next, we considered executing the query in a different fashion. In this approach, similar to the previous, we 

performed the sampling selection using the daily_index table. However, the next operation included 

creating a temporary table with only the selected message_ids. A query was then executed on the database 

to return the cross-product of the temporary table and the spam table. The execution of cross-product 

operation is optimized by the database itself, and therefore, the database is able to return the resulting 

records in split seconds. The timing measurements from using a temporary table and cross-product 

operation are shown in Figure 10. 

It can be seen that the total time required for the sampled data is much lesser than the time required for the 

complete data set. As it was seen previously in Figure 9, the load times for the sampled records were 

significantly high compared to the full data retrieval. However, in this case, it can be seen from Figure 10 

that the load times for sampled message_ids are around a few hundred milliseconds, which are much lesser 

compared to the full data. The maximum load time was required when we reached a sampling rate of 8%, 

which was still equal to the load time for the whole data set. If we compare our results from the initial 

timing measurements presented in Figure 8, it can be seen that the times for sampling rates 1%, 2%, 3%, 

and 5% are all much lesser in our optimized sampling operation. In the case of 8%, it is still lesser, but 

maybe comparable to the previously recorded measurements. 

Therefore, with the given results, we can argue that the proposed approach is significantly better than the 

original application layer filtering. We have successfully illustrated that the processing time for the sampled 



Figure 10: Timing Performance for Database Filtering using Temporary Table 

clustering using a temporary table is much better for reasonable sampling rates. Additionally, sampled 

clustering using this strategy reduces a lot of task load on the machine which executes the clustering 

algorithm. Even though we had both the program and the database on the same machine, it can be surely 

assumed that the database server is usually a separate machine with more processing power. Therefore, the 

described method of optimizing the process of sampling takes advantage of the processing power of the 

database engine, and keeps the machine running the clustering algorithm much lighter in its operation. 

7. RELATED WORKS 

Researchers have been working on interaction with large databases for a long time. Data mining and 

knowledge extraction technologies have been a rather new addition to the list of research works on large 

data sets. The clustering algorithm used here has been the ‘fast-n-dirty’ version of Chun Wei's work [Wei 

2010, Wei et al. 2009]. The focus of this paper was to illustrate the efficiency which can be reached prior to 

the process of clustering, leading to a faster identification of the ‘hot zone’. Therefore, the algorithm for 

clustering is separate from the sampling process. As a result, any underlying algorithm for the sampling 

models will provide more efficient results with respect to time and space.  

The performance of the clustering process and the quality of the resultant clusters depends on the 

corresponding clustering algorithms. In this paper, we have successfully illustrated that we are able to 

identify the prominent spam clusters from the sampled data, with radical improvements in timing 

performance for clustering algorithms. There are multiple clustering algorithms which explore the text-

based patterns in spam emails [Wei et al. 2009, Wei 2010, Kyriakopoulou and Kalamboukis 2008, 

Ramachandran et al. 2007, Sasaki and Shinnou 2005], including clustering algorithms specifically 

applicable for large datasets [Ganti et al. 1999]. Halkidi et al. proposed further techniques, which can be 

used to validate the clustering quality [Halkidi et al. 2001]. Therefore, given that we have proved sampling 

to be an effective data reduction process, our following research will focus on optimizing the clustering 

algorithms. 

We have explored different strategies and related works on clustering mechanisms. The oldest centroid 

based clustering method is the k-means algorithm [Hartigan and Wong 1979]. Later, many optimized and 

efficient versions of the k-means algorithm have been proposed [Kanungo et al. 2002]. One of the earliest 

works on modern clustering techniques was proposed by Koontz et al. [Koontz et al. 1975]. They proposed 

a branch and bound clustering algorithm based on global combinatorial optimization. DBSCAN is a well-

known density-based clustering algorithm. Arlia et al. proposed a method of parallelizing DBSCAN, which 

is suitable for high-dimensional data, and thus can be useful in implementing a suitable clustering algorithm 



for the huge number of spam emails [Arlia and Coppola 2001]. ST-DBSCAN is a different variation of 

DBSCAN, proposed by Birant et al. [Birant and Kut 2007], which performs the clustering based on 

identifying core objects, noise objects, and adjacent clusters. Ying et al. has already presented in [Ying et al. 

2010] a variation of DBSCAN to successfully identify spam clusters. The proposed research aims for faster 

clustering results from spam emails. Henceforth, it can be suitably stated that, given the organization of the 

spam data mine, we will be able to preserve the results from these clustering algorithms, when compared to 

clustering based on sampled data. 

There has been significant research on sampling methodologies so far. The random sampling with reservoir, 

proposed by Vitter [Vitter 1985], uses a non-replacing one pass sampler, requires constant space, and runs 

in O(n(1 + log(N/n))) time. These sampling models aim to introduce randomness in the sampled items. 

However, we are interested in identifying the most prominent clusters. The purpose is fulfilled using the 

proposed models and are shown to be effective in determining the ‘hot zone’ appropriately. Nagwani et al. 

[Nagwani and Bhansali 2010] proposed a weighted matching technique of attributes to measure attribute 

similarity of email content. The weights of the attributes are custom assigned and are then used to create the 

spam clusters. An algorithm for text clustering based on vector space is presented by Sasaki et al. in [Sasaki 

and Shinnou 2005]. The proposed algorithm creates disjoint clusters with the underlying spherical k-means 

algorithm to obtain centroid vectors of the spam clusters.  

There are other works related to email filtering which can be related to analyzing the content of spam 

emails. An interesting approach for filtering spam emails based on behavioral blacklisting has been 

proposed by Ramachandran et al. [Ramachandran et al. 2007]. The proposed method overcomes the 

problem of varying sender IP addresses by classifying sending patterns and behaviors of spammers, and 

subsequently enforcing blacklisting decisions. Thomas et al. presents an interesting approach for spam 

detection, which includes real-time web crawling of URLs, based on blacklists and whitelists [Thomas et al. 

2011]. All the approaches for clustering spam emails are suitable and will have varying results. These 

algorithms are typically applicable for spam filters, usually on web browsers and email clients. However, 

given the size of the dataset of the UAB Spam Data Mine [UAB-CIS 2013], we suggest that the purpose of 

identifying the ‘hot zone’ by eCrime investigators and law enforcement authorities is better served by 

avoiding such fine-grained spam detection algorithms. 

8. CONCLUSION 

Spam campaigns and emails create a lot of hassle in today's world. A lot of people fall victims to such 

scams every day. Most spams are sent using malware bots, which are installed on affected PCs and spread 

around like a virus. The UAB Spam Data Mine collects such spam emails, and provides reports on ongoing 

spam campaigns. Clustering the spam data to categorize and identify the spammer has been implemented 

using the full dataset. In this paper, we presented different models for sampling the spam data, to be used as 

a tool for data reduction. Subsequently, the sampled data were utilized to create the clusters.  

Our obtained results substantially prove that sampling the data and creating the clusters allow the 

investigators to interpret the same conclusions, as opposed to using the whole data set. As a result, we claim 

that it is much faster and efficient to perform the clusters after sampling the data, and thus identify the ‘hot 

zone’ within a significantly shorter period of time. We have provided extensive experimental results using 

actual spam data and investigated the distribution of spam in the data mine, which reinforced our claims of 

sampling being more effective given its purpose. Furthermore, we also presented an optimization strategy 

which utilizes the computational power of database engines to perform the sampling operation more 

efficiently, and thus promises faster results in terms of the time required. 
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