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ABSTRACT
Personal mobile devices and location based services are gaining
popularity every day. Since the location based services are often
customized based on the location information, it is important to
securely generate, preserve, and validate the claim of presence at
a given location at a given time as well as location provenance –
the history of locations for a mobile device user over a given time
period. Location provenance needs to imply secure and chronolog-
ical ordering of location proofs, which can be successfully verified
at a later time. Otherwise, the location based services can be eas-
ily spoofed by falsified location history. In this paper, we present
OTIT – a model for designing secure location provenance. We for-
malized the features and characteristics for the domain of secure
location provenance schemes, using formal propositional logic and
logical proofs. We also present several schemes, which can be used
in various modes to provide secure location provenance services.
Based on the characteristics defined in OTIT, we have analyzed
different schemes to show their adherence to the desired features of
secure location provenance. Furthermore, we present experimental
results on the performance of the various schemes, in terms of time
and storage, to show a comparative applicability analysis. We posit
that OTIT will serve as a comprehensive benchmark framework to
evaluate the models for secure location provenance.
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1. INTRODUCTION
Smartphones and other mobile devices have removed the barriers

for network oriented services. Fixed physical locations for network
attachment are no longer a concern when it comes to deploying
distributed systems. Users are no longer confined to a particu-
lar geographic location and can now be moving around locations
to access various services. Location based services have therefore
gained popularity as an application of mobility in networking. Lo-
cation based services are targeted to provide customization of ser-
vices based on the current physical location of the users. Service
providers perform authentication, authorization, access control, ac-
counting, and similar critical actions for the users in association
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with the geographical locations of the mobile devices [22].
Validity of location information and the process of validation is

always a critical task. High-stake applications require the trustwor-
thiness of location information and related proofs. Motives behind
manipulation of such information may vary from trivial personal
gains, such as, in social-games like FourSquare [26], to national
security issues, as that of spoofing Drones with false location data
[19]. Hence, location history and preservation of the corresponding
records can be considered very important in various aspects.

History is not preserved by itself1. The source of data is always
a concern to validate the authenticity of information. Provenance is
important for tracing the authenticity of an item back to its source
[23]. Securing data and information provenance requires a single
stamp from the issuing authority, which can be validated by any
requester at a later time [15].

History of locations, or location provenance, is the history of
locations traveled by a user. The provenance of location is a crucial
requirement in path critical scenarios. A valid claim of travel path
needs to be validated only in terms of the location provenance of
the travel. The integrity of a product may be highly justified by
the supply chain and the intermediate locations which a product
travels, as it is transported from the manufacturer to the hands of
the final consumer [16]. Location presence and generating proof
of presence require the information to be valid and unmodified at
a later time, such that it can be used as a secure token of evidence.
However, provenance for location is a continuous process. The
provenance records require location provenance to be preserved,
as the user travels around collecting location proofs. Moreover,
unlike the general data items, the sequence, in which the locations
are traveled, needs to be preserved in chronological order within the
provenance. As a result, provenance for location proofs portrays a
greater challenge than that for general data items.

In this paper, we present OTIT2, a model for secure provenance
for chronological preservation of location proofs. OTIT presents a
formal model for generating and maintaining a secure and order-
preserving chronological chain of the location proofs. We model
location provenance as a combination of propositional logic, and
their corresponding required properties. Based on our model, we
present different approaches for such provenance recording proto-
col. The paper includes formal proofs for each approach, experi-
mental evaluation, and comparative applicability analysis for each
of the approaches.

Contributions: The contributions in this paper can be summarized
as follows:
1“History is the version of past events that people have decided to
agree upon.” – Napoléon Bonaparte
2OTIT (pronounced \’o-θi:θ\) is the Bengali word for ‘past’ or ‘his-
tory’.
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• We present OTIT, a novel and formal model for chronolog-
ical order-preserving location proofs in provenance chains.
To the best of our knowledge, this is the first work done on
secure and order preserving location provenance records.

• We present different approaches, which can be used to design
chronological location provenance. Each of the approaches
are proved formally using our propositional model for OTIT.

• We provide experimental results to analyze the performance
of each of the approaches for preserving chronological lo-
cation provenance. Our comparative analysis based on the
OTIT model can help users in choosing different schemes
based on their preferences and priorities.

The rest of the paper is organized as follows. We discuss the
desired features of any provenance model and a summary of possi-
ble provenance schemes in Section 2. Section 3 presents the secu-
rity analysis of the schemes based on the selected features. Perfor-
mance analysis of different provenance models has been presented
in Section 4. Section 5 shows a comparative analysis among dif-
ferent models. Related work is presented in Section 6 followed by
conclusion in Section 7.

2. SECURE LOCATION PROVENANCE
Securing provenance records can be accomplished in a number

of ways. In this section, we first present the threat model for secure
location provenance. Subsequently, we present the requirements
for any secure and chronological location provenance scheme. We
also lay out the different approaches for secure preservation of lo-
cation provenance, the legacy ones as well as the ones which we
have modified for our purpose.

2.1 Threat Model
One of the assets in our model for secure location provenance

is the chronological ordering of location proofs. An attacker will
always try to alter the sequence of proofs in the provenance chain,
and present the tampered provenance record to validate a false time-
line for his travel path. We consider that the provenance chain
resides with the user at all time. Additionally, it is assumed that
an attacker has complete access to all storage and computation re-
sources on his personal device on which he stores the proofs and the
corresponding location provenance chain. Therefore, an attacker is
able to modify the order of the proofs in the chain at any later time,
when presenting the records to a provenance auditing authority. In
addition to modifying the provenance chain, the attacker can also
tamper with the location provenance record chain or the individual
proofs within the provenance records.

Given that a valid provenance chain is presented by a user to an
auditing authority, the auditor can try to look at information from
the individual proofs for which the user has not intended. Thus, a
breach of privacy for the user’s information will occur as the auditor
is verifying the provenance of location proofs. Moreover, given that
the location provenance is a chain of records, the user is unable to
protect himself from exposing a subset of proofs from within the
chain of proofs.

In an alternative scenario, a malicious user may want to hide an
intermediate point in a sequence of location proofs. Even though
the source and destination locations are the same, and in order, the
attacker is able to hide a temporary off-track movement from the
claimed provenance of locations. Therefore, the auditor, validating
the claim of chronological location proofs, will be oblivious to the
fact that the malicious user is hiding a rerouted path between two

given locations. Finally, an attacker may want to daunt a verifying
auditor with a huge task of validation in terms of data overload.

2.2 Requirements for Location Provenance
Here, we formalize and present the features and requirements

for OTIT, which are necessary for designing any secure location
provenance scheme.

Chronological: The location proof records should be ordered ac-
cording to the sequence of their visits. It is required that, the order
in which the location proofs are obtained by the user, should be en-
tered into the location provenance chain in that order. The chronol-
ogy of the proofs ensures that a malicious user is not able to create
false provenance chains for the order of visits. Given that a user
visited locations A, B and C in the sequence A→ B and B → C,
the provenance record chain should hold the corresponding proofs
in the given chronology of visits. Considering a location prove-
nance chain, . . . + Proof(A) + Proof(B) + Proof(C) + . . . should
be the order in the given sub-sequence.

Order Preserving: Given the chronology of the location proofs
in the provenance chain, the provenance chain of location proofs
should preserve the order in which the proofs were entered into the
chain. As we assume location provenance in a completely user-
centric environment, a user has complete access to the provenance
records stored on his personal device. As a result, it is required that
the order of proofs, with which the provenance chain is created,
is preserved at any point of time. This means that at a later time
(ti+δti), where ti is the time at which any proof i has been entered
in the provenance chain, the order of the proofs should be unaltered.

Verifiable: The proofs in the provenance and the order of the proof
items should be verifiable by a trusted auditor. Users possess lo-
cation provenance chains and use the chain of records to prove a
given sequence of travel. Hence, when an auditor is presented with
a provenance chain by the user, the auditor should be able to verify
the claim by the user of visiting locations A, B, and C in the order
A → B and B → C. A successful verification would validate the
claim by the user, and would have to be a false claim otherwise.

Tamper Evident: The information within the location provenance
chain should be tamper evident. In contrast to ensuring tamper
proof information, we emphasize that the provenance records should
reside with the user. We assume that the location provenance is a
user-centric scheme. Thus, the user has the flexibility of tampering
with the information within the provenance chain. Given a tam-
pered item, the verifying auditor should be able to detect that the
provenance chain has been tampered or modified by an unautho-
rized party.

Privacy Preserved: Given that a location provenance chain is pre-
sented to an auditor, it should not reveal any additional information,
which is not intended by the user to be revealed. Even though we
model location provenance preservation as a user-centric design,
the user needs to present the proofs to the verifying auditor for val-
idating the claimed provenance. For the proofs, which are being
presented for verifying the provenance chain, it is required that the
user has a control on the level of privacy exposure. The overall ex-
pectation is, when the provenance chain is verified for specific lo-
cation proofs, the privacy is preserved for the other location proofs
within the chain.

Selective In-Sequence Privacy: A provenance scheme is required
to support sub-set verification in terms of privacy and convenience.
Location provenance generation is a continuous process and evolves
with time. The provenance chain adds the collected proofs in chrono-
logical order and builds itself. At any given moment, it is highly
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HC BC BF SH MH RC
Chronological 3 3 3 3 3 3

Order Preserving 3 3 3 3 3 3

Verifiable 3 3 3 3 3 3

Tamper Evident 3 3 3 3 3 3

Privacy Preserved 7 7 7 3 7 3

Selective In-Sequence Privacy 7 7 3 7 7 7

Privacy Protected Chronology 7 7 7 7 7 3

Convenience and Derivability 7 3 3 7 3 7

Table 1: Comparison of Location Proof Provenance Approaches:
Hash Chains (HC), Block-Hash Chains (BC), Bloom Filter (BF),
Shadow Hash Chain (SH), Multi-Link Hashing (MH), and RSA
Chaining (RC)

likely that the user will want to prove only a sub-set from the cur-
rent location provenance chain. Therefore, given a sequence of
proofs . . . + Proof(A) + Proof(B) + Proof(C) + . . . , a user may
wish not to reveal the information regarding Proof(B), such that the
auditor verifying the information should not be able to view the
information within the particular proof, or subset of in-sequence
proofs.

Privacy Protected Chronology: As it highly likely that a user will
only desire to prove a sub-set of the location provenance chain,
the provenance scheme should also ensure that the user does not
hide away important information from the items within the sub-
set of the provenance chain. Given that the sequence of proofs is
. . . + Proof(A) + Proof(B) + Proof(C) + . . . , the user may selec-
tively hide Proof(B). However, the auditor must be able to view the
chronology of the sub-sequence. This is because, in case of pri-
vacy protected provenance validation, . . . + Proof(A) + Proof(C)
+ . . . is an invalid claim, as it shows the user went from location
A → C. However, . . . + Proof(A) + Proof(?) + Proof(C) + . . .
is a valid claim with one privacy preserved subset of in-sequence
proofs, as it shows the user traveled from location A→ (?) → C,
where Proof(?) is a hidden proof.

Convenience and Derivability: As we consider the process of
collection of location proofs is a continually evolving process, the
provenance chain will go on increasing in length with time. Thus,
given that an auditor requires verifying a provenance claim, the pro-
cess of verification should be convenient. The provenance scheme
should ensure that the user does not burden the verifying auditor
with a huge load of data. We specify space complexity as a mea-
sure of convenience for both the user and the auditor. Therefore,
the location provenance should ensure minimal number of items,
which are required to be presented by the user to the auditor for
verification. A naïve approach requires a sequential access along
the whole chain to allow the auditor to derive and verify a sub-
sequence A → B → C. However, an ideal scheme should allow
derivation and verification of sub-sequences in a convenient man-
ner.

2.3 Provenance Approaches
Next, we discuss the approaches that we have considered for se-

cure preservation of location provenance using our model - OTIT.
We describe each of the schemes and also present a summarized
comparison of the schemes in Table 1.

Hash Chain: Hashing refers to the most primitive form of integrity
preservation techniques. Hash chains are an extension of the basic
hashing scheme to preserve the order of hashed values. We use the
hash of the ith proof and append it to proof (i + 1) to create the

(i + 1)th hash element [15]. For the first proof, hash of element 0
uses an initialization vector to begin the chain creation process.

Block Hash Chain: In our block hash chains, we create sub-segments
or blocks of hash chains, each starting with a unique initialization
vector. Therefore, for every kth proof, we terminate the chain
block, and begin the next chain block using another unique ini-
tialization vector. Additionally, we also store a hash chain of the
unique initialization vectors for each block, which ensures that the
blocks of hash chain cannot be altered in sequence. The user is re-
quired to store a total of n/k initialization vectors, where n is the
total number of proofs.

Bloom Filter: The Bloom filter is an accumulator based data struc-
ture, with a probabilistic membership verification [5]. Our Bloom
filter based approach uses individual fixed length Bloom filter for
each proof. The individual Bloom filters accumulate the hash val-
ues for the proofs and are used to prove implicit chronology of lo-
cation proofs. For the given Bloom filter for proof i, all the proofs
from 0 to i are hashed individually and included in the Bloom filter.
Therefore the Bloom filter for proof (i+1) holds the set bits for all
the hashes of the proofs from 0 to (i+ 1).

Shadow Hash Chain: We introduce the concept of a shadow hash
chain, which refers to two hash chains together being generated in
the same way as for a single hash chain. We generate the first chain
by forming the hashes from the plain text proofs. However, another
corresponding hash entry is made into the second hash chain, which
is a hash generated from encrypting proof (i+ 1) and padding the
hash for encrypted proof i. In this context, the second hash chain
is referred to as the shadow hash. The shadow hash chain is useful
in proving a sequence of location proofs (i − 1), i, and (i + 1),
without revealing the plain text contents of proof i.

Multi-Link Hash Chain: In multi-linked hashing, each proof en-
try i in the hash chain is padded with the hash of k other proofs,
where k is a subset of of proofs such that km ∈ [0..(i − 1)], and
m� n, where n is the total number of proofs, and |k| = m.

RSA Chaining: An RSA chain is formed using the concepts of an
RSA accumulator [2, 3, 7]. An RSA accumulator is a cryptographic
one-way data structure, similar to Bloom filter. The accumulator is
based on RSA assumption and provides the functionality of check-
ing the membership of an element in a set. Unlike Bloom filters,
RSA accumulators works with zero false negative and false positive
probability. In this case, we create a cryptographic accumulator us-
ing the hash of the previous proof in the provenance chain and a
secret number. The RSA chain helps to prove location provenance
without requiring the user to expose any proofs, unless intended.

3. SECURITY ANALYSIS
In this section, we present the security analysis for the afore-

mentioned provenance schemes for location proofs. Our proofs are
based on the required properties for location provenance.

Lemma 1: A location proof is a securely generated data item for
user U, which validly verifies the presence of user U at location Li,
where i ∈ {1, 2, ..., n}.

Lemma 2: A location provenance chain C is a record of location
proofs for locations Li, where i ∈ {1, 2, .., n }, and presence at
each location L is verified using a location proof Proof(L) for that
location.

Therefore, using Lemma 1 and Lemma 2, we can say that if a
user U presents a provenance chain C, which has Proof(L) as one
of the elements, this verifies the claim that the user U was present
at location L.

3



3.1 Security Propositions
Using the above lemmas, we put forward the following security

propositions for location provenance.

Proposition 1 - Chronological (P1):
If user U visited locations (Li−1), (Li), and (Li+1) in order (Li−1)
→ (Li) → (Li+1), the provenance chain C enters the location
proofs as Proof(Li−1) + Proof(Li) + Proof(Li+1), which is the
order in which they were received by user U.

Proposition 2 - Order Preserving (P2):
If user U visited locations (Li−1), (Li), and (Li+1) in order (Li−1)
→ (Li) → (Li+1), given that Proposition 1 holds true at time t,
the provenance chain C preserves the order at time (t+ δt), where
δt is a positive value.

Proposition 3 - Verifiable (P3):
If user U presents an auditor A the location provenance chain C
with Proof(Li−1) + Proof(Li) + Proof(Li+1), and individual proofs
- Proof(Li−1), Proof(Li), and Proof(Li+1), the auditor can suc-
cessfully verify the claimed order of visits (Li−1)→ (Li)→ (Li+1)
for user U.

Proposition 4 - Tamper Evident (P4):
If user U presents a tampered location provenance chain CT and/or
tampered individual proofs to the auditor A, the auditor can suc-
cessfully detect the tampering and the falsely claimed order of visits
for user U.

Proposition 5 - Privacy Preserved (P5):
If user U wants to validate his location provenance to an auditor
A, no information intended to be hidden is visible to the auditor A.

Proposition 6 - Selective In-Sequence Privacy (P6):
If user U presents the location provenance chain C which is cur-
rently holding Proof(Li−1) + Proof(Li) + Proof(Li+1), the user is
able to prove Proof(Li−1), Proof(Li+1), without revealing Proof(Li)
to the auditor A.

Proposition 7 - Privacy Protected Chronology (P7):
If a user U presents to an auditor A the location provenance chain
C containing Proof(Li−1) + Proof(Li) + Proof(Li+1), and hides
Proof(Li), the auditor A is able to validate the provenance chain
for the sequence of visits as (Li−1)→ (?)→ (Li+1).

Proposition 8 - Convenience and Derivability (P8):
If a user U has a provenance chain C with n number of proofs, and
wants to prove m number of proofs from the provenance chain C to
an auditor A, with the maximum range of proofs as r, the complexity
of computation for verification is less than O(r), and greater or
equal to O(m).

Given the above propositions (P1 - P8), next we will show the
proofs for the different location provenance approaches discussed
in Section 2.

3.2 Provenance Proofs
Here we prove/disprove all 8 propositions for each of the schemes

mentioned in Section 2.

3.2.1 Hash Chain
For including Proof(Li) in the provenance chain C, where i = 0,

we use an initialization vector V, and a hash function hf(x), and
x = Proof(L0) + V .

For including Proof(Li), where (i > 0) ∧ (i ∈ <), we use the
hash function hf(x), and x = Proof(Li) + hf(Proof(Li−1)).

Therefore, the order in which user U had received Proof(Li−1),
Proof(Li), and Proof(Li+1), is maintained in order within the lo-
cation provenance chain C.

∴ Proposition P1 is true.
Given P1 is true, if Proof(Li) is entered in the provenance chain

C at time ti, it implies that Proof(Li−1) was already present in
the chain, which was entered at time ti−1. A trusted provenance
authority generating the provenance chain for the user ensures the
order preservation before the current proof is entered into the chain.
Therefore, ti−1 < ti, that is, ti−1 + δt = ti.
∴ Proposition P2 is true.

A user U intends on proving the location proof provenance (Li)
→ (Li+m), wherem ≥ 1. The user U presents the following items
to the auditor: (i) the proofs Proof(Lx), where i ≤ x ≤ i+m, and
(ii) the hash value hf(Proof(Li−1)).

The auditor A calculates hf(x) for Proof(Lx), where i ≤ x ≤
i + m. Once it reaches Proof(Li+m), the auditor compares the
calculated value with the value in the hash chain C to be true.
∴ Proposition P3 is true.

The user U possess the provenance chain C at time t. At time
t + δt, tampered location provenance chain CT is presented to the
auditor A. However, the auditor calculates the whole sub-chain of
the hashes and then compares the calculated value with the value
in the hash chain C to be true. Additionally, the hash values used
in the location provenance chain C bears a trusted signature from a
provenance authority.
∴ Proposition P4 is true.

For verification, the user U presents all plain text proofs, with-
out any information hiding schemes applied. Proofs which are not
intended to be exposed are enforced to be presented as well. As a
result hash chain does not preserve the privacy related propositions.
∴ Propositions P5, P6, P7 are false.

Additionally, all proofs are required by the auditor A to be able
to derive the final hash value contradicting the convenience and
derivability issue.
∴ Proposition P8 is false.

Proof 1: Hash Chain holds the following truth values for the propo-
sitions P1, P2, P3, P4,¬P5,¬P6,¬P7,¬P8.

3.2.2 Block Hash Chain
For including Proof(Li) in the provenance chain C, where i%b =

0 and b is our block size, we use an initialization vector (Vj), and
a hash function hf(x), and x = Proof(Li) + Vj , where j ∈ {1, 2,
.., n/b }.

For including Proof(Li), where (i%b 6= 0)∧(i ∈ <), we use the
hash function hf(x), and x = Proof(Li) + hf(Proof(Li−1)).

For maintaining chronology of initialization vectors (Vj), we
maintain a hash chain CV of initialization vectors, where j ∈ {1, 2,
.., n/b }. We use the hash function hf(x), and x = Vj + hf(Vj−1).

Therefore, the order in which user U had received Proof(Li−1),
Proof(Li), and Proof(Li+1), is maintained within the location prove-
nance chain C within each block bi. The order of the blocks are
maintained using hash chain CV . Provenance proof for hash chains
is already proved true in Proof 1.
∴ Proposition P1 is true.

The chronological order preservation of location proofs in the
provenance chain functions in a similar manner as to that in hash
chains.
Proposition P2 is true, ∵ already true in Proof 1.

A user U intends on proving the location proof provenance (Li)
→ (Li+m), where m ≥ 1.

In the first case, (Li) and (Li+m) are within the same block. In
this scenario, the verification proceeds the same way as in Proof 1.

In the second case, (Li) and (Li+m) are in two separate blocks
j and k, where each block is of size b, and j < k. The user U
presents the following items to the auditor: (i) the jth block of the
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provenance chain C, where the jth block holds (Li), (ii) the proofs
Proof(Lx), where j ∗ b ≤ x ≤ i, (iii) the kth block of the prove-
nance chain C, where the kth block holds (Li+m), (iv) the proofs
Proof(Ly), where k ∗ b ≤ y ≤ i +m, (v) the block initialization
vectors Vz , where j ≤ z ≤ k, and (vi) the hash value hf(Vj−1).

The auditor A calculates hf(x) for Proof(Lx), where j ∗ b ≤ x ≤
i, till it reaches Proof(Li). The auditor A then calculates hf(x) for
Proof(Ly), where k ∗ b ≤ x ≤ i+m, till it reaches Proof(Li+m).
The auditor compares the calculated values with the value in the
hash chain C to be true.

The auditor A then verifies the initialization vector hash chain
CV , using hf(Vj−1), and initialization vectors Vj to Vk. The au-
ditor compares the value with the presented hash chain CV to be
true.
∴ Proposition P3 is true, given P3 is true in Proof 1.
Proposition P4 is true, ∵ already true in Proof 1.

Similar to hash chains, the block hash chain does not incorporate
any information encapsulation. Although the block hash chain does
not require all items within Proof(Lx) and Proof(Ly), where x <
y, it does not allow selectively hiding proofs. Neither does it allow
in-sequence privacy, as it does not allow the user U to choose the
item for which to preserve the privacy in chronology.
∴ Propositions P5, P6, P7 are false.

As shown above, in the worst case, the user U only presents a
sub-set of the proofs between Proof(Lx) and Proof(Ly).
∴ Proposition P8 is true.

Proof 2: Block Hash Chain holds the following truth values for
the propositions P1, P2, P3, P4,¬P5,¬P6,¬P7, P8.

3.2.3 Bloom Filters
We use Bloom filters for implicitly maintaining location proof

entries in the provenance chain C. For every location proof Proof(Li),
there is a corresponding Bloom filter BFi. The Bloom filter ac-
cumulator BFi inserts the signed location proofs as a function
FuncBEnt(), such thatBFi = ∀xFuncBEnt[Proof(Lx)], where
x ∈ {0 . . . i}. Therefore, by induction, BFi+1 for Proof(Li+1) is
created such that, BFi+1 = ∀xFuncBEnt[Proof(Lx)], where
x ∈ {0 . . . i+ 1}.
∴ Proposition P1 is true.

Given P1 is true, if the provenance Bloom filter BFi is created
for Proof(Li) at time ti, it implies that BFi−1 which existed for
Proof(Li−1) was created at time ti−1. Therefore, ti−1 < ti, that
is, ti−1 + δt = ti.
∴ Proposition P2 is true.

A user U intends on proving the location proof provenance (Li)
→ (Li+m), wherem ≥ 1. The user U presents the following items
to the auditor: (i) the proofs Proof(Li) and Proof(Li+m), and (ii)
the corresponding Bloom filters BFi and BFi+m.

The auditor A performs a membership check on the Bloom fil-
ter, using function FuncBChk(), which returns either True or False.
Membership check for Proof(Li) in both BFi and BFi+m using
FuncBChk() should return True. Membership check for Proof(Li+m)
in both BFi and BFi+m using FuncBChk() should return False
and True respectively. Therefore, it is verified thatBFi ⊂ BFi+m,
and (Li)→ (Li+m).
∴ Proposition P3 is true.

At time t, the user U possesses the Bloom filters BFk, where
0 ≤ k ≤ t. At time t+ δt, tampered Bloom filtersBFT

i andBFT
j

are presented to the auditor A in correspondence with Proof(Li)
and Proof(Lj), where i < j. However, the auditor uses both the
proofs and the Bloom filters with the membership check function
FuncBChk() to verify BFi ⊂ BFi+m. Additionally, the proofs
used for creating the Bloom filters for function FuncBEnt() are

signed by a trusted provenance authority.
∴ Proposition P4 is true.

Our Bloom filter approach does not include any encryption for
the proofs. As a result, the user U does not have any option for
information hiding within the location proofs.
∴ Proposition P5 is false.

User U wants to prove (Li−1)→ (Li+1) without revealing (Li).
Therefore, the user U presents Proof(Li−1), Proof(Li+1), and the
corresponding Bloom filters BFi−1 and BFi+1 to the auditor A.
As already shown above, BFi−1 ⊂ BFi+1. Therefore, the auditor
A can verify the claim by user U.
∴ Proposition P6 is true.

User U wants to prove (Li−1) → (?) → (Li+1). Therefore,
the auditor checks only BFi−1 and BFi+1, and verifies BFi−1 ⊂
BFi+1, without the knowledge that there is another location in be-
tween (Li−1) and (Li+1).
∴ Proposition P7 is false.

As shown above, given that there are n proofs and Bloom filters
in the provenance chain C, the user U only presents m proofs and
Bloom filters. Here, m is number of locations for which user U
wants to receive validation from the auditor A and m << n.
∴ Proposition P8 is true.

Proof 3: Bloom Filter holds the following truth values for the
propositions P1, P2, P3, P4,¬P5, P6,¬P7, P8.

3.2.4 Shadow Hash Chain
A shadow hash chain works in the same way for hash chains.

However, in addition to the chain of hash values for Proof(Li),
where (i 6= 0) ∧ (i ∈ <), there is a secondary chain of encrypted
hash values of the proofs Enc[Ki, Proof(Li)], where Enc() is
an encryption function, and Ki is the unique encryption key for
Proof(Li).
Proposition P1, P2, P3, P4 is true, ∵ already true in Proof 1.

The user U wants to prove (Li)→ (Li+1) to auditor A, without
revealing the information within Proof(Li+1). Therefore, along
with the segment of the hash chain, the user U presents the unique
key Ki, Enc[Ki, Proof(Li)], and Enc[Ki, Proof(Li+1)]. The au-
ditor A thus calculates the encrypted proof hash chain in the same
way as before, without Proof(Li+1) being visible. Verification by
preserving sub-chain privacy can also be executed by presenting
three sub-chains: (i) (Li)→ (Li+j−1) from the regular hash chain,
(ii) (Li+j) → (Li+k−1) from the encrypted shadow hash chain,
and (iii) (Li+k)→ (Li+m), where 0 ≤ i < j < k < m ≤ n.
∴ Proposition P5 is true.

The auditor A requires the shadow hash chain to be generated
sequentially, and does not allow the user U to selectively hide any
proof from within a sequence. The chain requires all the proofs or
the encrypted proofs to be presented to the auditor A.
∴ Propositions P6, P7 are false.

Given that P1 is true, and P6, P7 are false, the user U proving
(Li)→ (Li+r) requires to present r items for verification.
∴ Proposition P8 is false.

As an extension to shadow hash chains, we can apply the block
based approach to the shadow hash chain scheme, as shown in
block hash chains. In this case, we will use the initialization vec-
tor Vk for each block k of the hash chain, as well as the encrypted
hash chain. Therefore, we are able to achieve the complexity of
computation less than O(n).
Proposition P8 is true for blocks, ∵ already true in Proof 2.

Proof 4a: Shadow Hash Chain holds the following truth values
for the propositions P1, P2, P3, P4, P5,¬P6,¬P7,¬P8.
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Proof 4b: Block Shadow Hash Chain holds the following truth
values for the propositions P1, P2, P3, P4, P5,¬P6,¬P7, P8.

3.2.5 Multi-Link Hash Chain
In our scheme for multi-link hash chains, we use two-link (or

more) hashing for each proof in the provenance chain C.
For including Proof(Li) in the hash chain, we use the hash func-

tion hf(x), and x = Proof(Li) + Vi + Vi+s−1, where 0 ≤ i ≤
s − 1, and s is the link size. For including Proof(Li), where
s ≤ i ≤ n, we use the hash function hf(x), and x = Proof(Li) +
hf(Proof(Li−1))+hf(Proof(Li−s)). The other properties and
operations are the same as hash chains.
Proposition P1, P2 is true, ∵ already true in Proof 1.

If user U wants to prove (Li) → (Li+m) to auditor A, where
m ≤ s, the convenience and derivability remains the same as in
hash chains. When m ≤ s, user U presents the following to the au-
ditor A: (i) Proof(Li) and Proof(Li+m), (ii) immediately preced-
ing hash values hf(Proof(Li−1)), hf(Proof(Li+m−1)), (iii)
the linker hash value for ith position hf(Proof(Li−s)), and (iv)
the linker hash values for (i+m)th position hf(Proof(L(q∗r)−s)),
and the proofs Proof(Lq∗r)), where q = ((i+m)%s), and r is the
number of leaps of size s, from i→ (i+m).
Example: User U wants to prove (L6)→ (L13) to an auditor A.

For proving (L6)→ (L13), let us assume that the user U main-
tains a multi-link hash chain, with link length s = 5, and presents
the following items to the auditor for verification of the claim:
Proofs: Proof(L6), Proof(L7), Proof(L8), and Proof(L13).
Hash values:hf(Proof(L1)), hf(Proof(L2)), hf(Proof(L3)),
hf(Proof(L5)), and hf(Proof(L12)).

For verification, the auditor A calculates hf(Proof(L6)) using
Proof(L6), hf(Proof(L5)), and hf(Proof(L1)). The auditor
then calculates hf(Proof(L7)) using Proof(L7), hf(Proof(L2)),
and the previously calculated hf(Proof(L6)). Next, the hash
hf(Proof(L8)) is calculated using Proof(L8), hf(Proof(L3)),
and the previously calculated hf(Proof(L7)). Finally, the auditor
calculates hf(Proof(L13)) using Proof(L13), hf(Proof(L12)),
and the previously calculated hf(Proof(L8)).
∴ Proposition P3 is true.
Proposition P4 is true, ∵ already true in Proof 1.
Propositions P5, P6, P7 are false, ∵ already false in Proof 2.

As shown in the example, for proving (Li)→ (Li+m), the user
U presents a subset of the proofs from the range i→ (i+m).
∴ Proposition P8 is true.

Proof 5: Multi-Link Hash Chain holds the following truth values
for the propositions P1, P2, P3, P4,¬P5,¬P6,¬P7, P8.

3.2.6 RSA Chaining
We use RSA accumulators to design our RSA chains for location

provenance. For every RSA provenance chain, we require private
values P and Q, which are large prime numbers. The first public
value is N, where N = P*Q, and the second public value is a large
random number which is the initial seed R.

An accumulator Ci for the RSA chain is created using the func-
tion FuncRSACreate(), such that Ci ∈ ∀iFuncRSACreate(x). Here,
x=[Rhf(Proof(Li)) % N], for i=0; and x=[CH(Proof(Li))

i−1 % N], for
(i ∈ <) ∧ (i > 0), and hf(Proof(Li)) is the numerical hash
value for Proof(Li).
∴ Proposition P1 is true.

Given P1 is true, Ci is created for the Proof(Li) at time ti. There-
fore, it implies that either it is the first location proof, for which we
have the initial public seed R, which is the trivial case. Otherwise,
we know that Ci−1 was created at ti−1, in which case ti−1 < ti,
that is ti−1 + δt = t.

∴ Proposition P2 is true.
The user U wants to prove the location provenance Li → Li+m.

He presents the auditor A the following items: (i) the RSA chain
accumulators Ci and Ci+m, (ii) the hash values hf(Proof(Lr)),
where (i − 1) ≤ r ≤ (i + m), (iii) the proofs Proof(Li) and
Proof(Li+m), and (iv) the public value N. The auditor A uses the
presented items to create Ci+m from Ci, and compares the validity
with the one presented by the user U.
∴ Proposition P3 is true.

At time t, user U possesses the RSA chain accumulators Ck,
where 0 ≤ k ≤ t. The tampered accumulators CT

i and CT
j are pre-

sented to the auditor A by the user U, which correspond to the loca-
tions Li and Lj , and i < j. However, the auditor only accepts the
claim of location provenance if and only if the sequential derivation
of the accumulator from CT

i to CT
j is successful. Additionally, the

hash values for hf(Proof(Lr)), where (i − 1) ≤ r ≤ (j), are
signed by the trusted provenance authority, need to be validated as
well.
∴ Proposition P4 is true.

The auditor A verifies the location provenance using the hash
values for all proofs, the RSA chain accumulators, and the visi-
ble proofs for only the intended items. The user U never presents
anything which is not intended to be revealed to the auditor A.
∴ Proposition P5 is true.

User U intends on proving the location provenance Li−1 → Li

→ Li+1, without revealing location Li. He presents the hashes
hf(Proof(Li−1)), hf(Proof(Li)), and hf(Proof(Li+1)), and
the plain text proofs Proof(Li−1) and Proof(Li+1).
∴ Proposition P6 is false.

However, no information apart from the hash regarding Li is ex-
posed, which is a one-way function, and does not effect the privacy.
As a result, the user U is able to prove Li−1→ (?) → Li+1.
∴ Proposition P7 is true.

For verifying Li → Li+m, the auditor A requires all the hash
values of proofs hf(Proof(Lr)), where (i− 1) ≤ r ≤ (i+m).
∴ Proposition P8 is false.

Proof 6: Multi-Link Hash Chain holds the following truth values
for the propositions P1, P2, P3, P4, P5, P6, P7,¬P8.

4. EVALUATION
In this section, we present the performance analysis of the pro-

posed schemes based on storage and time requirement for different
operations on provenance chain.

4.1 Experimental Setup
Location proof database: Since we have not found any database
containing location proofs directly, we have modified the Foursquare
database [12] for our purpose. Foursquare database contains 2073740
check-ins of 18107 users from March 2010 to January 2013. Each
entry of this database contains user ID, latitude, longitude, time,
and location ID. We concatenate all the fields and hash the con-
catenation using MD5 hash algorithm generating a 32 byte string,
which we use as a location proof entry.

Criteria: We have evaluated the performance of each of the schemes
based on the following common operations done on location proofs.

• Provenance generation time: This refers to the time required
to generate provenance information from the location proofs
and insert them in the provenance chain. To evaluate the per-
formance of the schemes, we generate provenance for differ-
ent number of proofs e.g. 500, 1000, etc. and measure their
respective timing requirement.
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• Sequential chain verification time: This is the time required
to verify all the location proofs in the provenance chain in
sequential manner.

• Sparse chain verification time: This is the time required to
verify the sequence (who comes first) of any two randomly
selected location proofs of the provenance chain. We have
termed the first proof as the source proof and the second
proof as the destination proof in the rest of the paper. It
should be noted that, the sparse verification time increases
with the increase of the gap between these randomly selected
proofs. This issue creates a problem since for one scheme,
the gap between random selections might be too small com-
pared to other schemes and thus creating drastic difference
in the performance. In order to handle this scenario, we have
always picked proofs with fixed gap size for all the schemes.
For example, we have measured the sparse verification time
for the 1st and 100th proof, 1st and 200th proof and so on
for all the schemes.

System configuration: We implemented the schemes on a Dell
laptop, running Debian 3.2.46-1 on Intel Core 2 Duo CPU (6MB
Cache, 2.66GHz) with 4GB of RAM. All of the schemes are devel-
oped on OpenJDK (version:1.6.0_27). We used SHA-2 (SHA-256)
hash function for hashing and RSA (1024 bit) for encryption.

4.2 Block Hash Chain
Figure 1 presents the performance analysis of block hash chain

scheme for different block sizes.
Provenance Generation Time: From Figure 1a, we notice that
the provenance generation time increases linearly with the increase
in number of proofs, and performance increases with the increase
in block size. For smaller block size, we will have more number
of blocks, i.e., we need to maintain a longer chain of initialization
vectors (V) for smaller block size. Hence, for bigger block size, we
get better performance for provenance generation.

Sequential Verification Time: Figure 1b shows the time require-
ment for sequential chain verification. We notice that, the verifica-
tion time increases linearly with the number of proofs irrespective
of the block size. Moreover, the graph shows that the timing re-
quirements vary a little with the increased block size. For sequen-
tial verification, we need to verify the provenance of each proof in
relation with its previous proof inside the same block. The prove-
nance information of the first element of a block is verified using
the initialization vector of that block. Hence, for the first element
of a block, we do not need to retrieve the hash chain of its previ-
ous element. Retrieving initialization vector of a block is slightly
faster than retrieving the hash chain of the previous element. For
this reason, we get slightly better performance for smaller block
size.

Sparse Verification Time: Figure 1c presents the performance
analysis of verifying two provenance entries, where the location
proofs are separated by varying distances. In block hash chain
scheme, first we need to verify the presence of the selected proofs
in their respective blocks. Once the blocks are identified, we need
to check whether the initialization vector of the source proof (Vs)
comes before that of the destination proof (Vd). In order to do
so, we traverse through the provenance chain of the initialization
vectors starting with Vs and try to reach Vd. We get better perfor-
mance for larger block size since it ensures shorter length for the
provenance chain of initialization vectors.

Space Requirement: Provenance information is stored as a signa-
ture of location authority on the hash. Hence, for each provenance

information, we require 128 bytes (for RSA 1024). As we are main-
taining two provenance chains (location proofs and initialization
vectors), N number of proofs require N*128 + (N/Block Size)*128
bytes. The space requirement is for one proof is therefore:

128 ∗ (1 + 1/BlockSize) (1)

According to equation 1, space requirement for block size 5, 25,
and 50 are 153.6, 133.12, and 130.56 bytes respectively.

4.3 Bloom Filter
Figure 2 presents the performance analysis of Bloom filter based

scheme for two different filter sizes: 1000 and 2000 byte.
Provenance Generation Time: From Figure 2a, we notice that
the provenance generation time increases linearly with the increase
in number of proofs. We can generate approximately 12 prove-
nance entries per second using 1000 byte Bloom filter. Whereas,
using 2000 byte Bloom filter, we can generate roughly 3 prove-
nance entries per second. However, the smaller sized Bloom filter
suffers from higher false positive probability. For example, 1000
byte Bloom filter generates 2% false positive results considering
1000 proofs. Whereas, using 2000 byte Bloom filter, we can re-
duce the false positive probability to 0.04% for the same number of
proofs [5].
Sequential Verification Time: Figure 2b shows the time require-
ment for sequential chain verification. We notice that, for both the
Bloom filters, time increases linearly with the number of proofs.
Using 1000 byte Bloom filter, we can verify a provenance chain
of length ≈ 3758 in one second and for the 2000 byte Bloom, the
corresponding chain length is approximately 2685. The difference
in sequential verification timing requirement, for the different sized
Bloom filters, is significantly less compared to that of provenance
generation.
Sparse Verification Time: Figure 2c presents the performance
analysis of sparse verification for two different sized Bloom filters.
Both the Bloom filters take nearly constant time for this verifica-
tion. The reason is that, we always need to run only one subset
checking operation for the two provenance entries. Because of the
larger bit array, we get slightly higher time for the larger Bloom
filter.
Space Requirement: As location authority will sign the Bloom
filter and we preserve only the signature, Bloom Filter scheme re-
quires 128 bytes (for RSA 1024) to preserve the provenance of one
proof. Noticeably, the storage requirement does not change with
the size of the Bloom filter.

4.4 Multi-Link Hash Chain
Figure 3 presents the performance analysis of multi-link hash

chain scheme for different link sizes.
Provenance Generation Time: From Figure 3a, we notice that
the provenance generation time increases linearly with the increase
in number of proofs for each of the link sizes. We did not get much
variation in time for different sized links. we get the best perfor-
mance for the link with highest size. As we need lesser linking
operations for larger link size, the provenance generation time de-
creases with the increase in link size.
Sequential Verification Time: Figure 3b shows the time require-
ment for sequential chain verification. For each of the link sizes,
time increases linearly with the number of proofs, and the required
times are very close for different link sizes. For sequential veri-
fication, we need to verify the provenance of each proof with its
previous proof and the proof with whom it is linked. As larger
link size requires lesser number of links, number of operations that
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Figure 1: Time Required in Different Operations for Block Hash Chain

1000 2000 3000 4000 5000 6000 7000 8000
Number of Proof

0

500000

1000000

1500000

2000000

2500000

Ti
m

e 
(m

ill
is

ec
)

Bloom Content:1000 Byte
Bloom Content:2000 Byte

(a) Provenance Generation

1000 2000 3000 4000 5000 6000 7000 8000
Number of Proof

0

500

1000

1500

2000

2500

3000

Ti
m

e 
(m

ill
is

ec
)

Bloom Content:1000 Byte
Bloom Content:2000 Byte

(b) Sequential Verification

100 200 300 400 500 600 700 800
Avg. Distance

0

10

20

30

40

50

Ti
m

e 
(m

ill
is

ec
)

Bloom Content:1000 Byte
Bloom Content:2000 Byte

(c) Sparse Verification
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Figure 3: Time Required in Different Operations for Multi-link Chain

check the provenance with the linked proof will be reduced. Hence,
higher link size gives better performance.

Sparse Verification Time: Figure 1c presents the performance
analysis of sparse verification for different size of links. As we can

quickly reach from the source proof to the destination proof us-
ing larger links, we observe better performance with increased link
size. However, if the distance between the source and destination
proof is less than the link size, we cannot utilize the benefit of using
multi-link chain. Hence, we get better performance using smaller
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sized links, where the distance between the source and destination
proof is smaller.
Space Requirement: Space requirement does not vary with link
size for this scheme, as we do not need any extra storage for the
links. Location authority signs hash value and we preserve only
the signature of the hash. Hence, multi-link hash chain scheme
requires 128 bytes (for RSA 1024) to preserve the provenance of
one proof.

4.5 RSA Chaining
Figure 3 presents the performance analysis of RSA chaining scheme

for two different sized private keys: 128 and 256 bits.
Provenance Generation Time: From Figure 4a, we notice that the
provenance generation time increases linearly with the increase in
number of proofs for both of the key sizes. For larger key size, the
performance decreases significantly. Time to generate one prove-
nance entry using 128 bits key is approximately 628 milliseconds.
Whereas, using the 256 bits key, time required to generate one
proof is about 2620 milliseconds. However, the larger the key size,
the higher the security against chosen cypher-text attack.
Sequential Verification Time: Figure 4b shows the time require-
ment for sequential chain verification using RSA chaining scheme.
For each of the key sizes, time increases linearly with the number
of proofs. Time required to verify the provenance of two consec-
utive proofs using 128 bits key is approximately 398 milliseconds,
and using 256 bits key, it is around 1290 milliseconds.
Sparse Verification Time: Figure 4c presents the performance
analysis of sparse verification for different key sizes. In RSA chain-
ing scheme, we need to traverse the whole provenance chain from
the source proof to the destination proof. Hence, for RSA chaining
scheme, sparse verification time increases linearly with the distance
between source and destination proofs.
Space Requirement: For RSA chaining scheme, space require-
ment to preserve the provenance of one proof is constant. The ac-
cumulator value is signed by the location authority and stored as the
provenance entry. Hence, the space requirement for RSA chaining
scheme is 128 bytes (for RSA 1024).

4.6 Hash Chain and Shadow Hash Chain
As we used a fixed hash algorithm for all the schemes, there

is no criteria for hash chain and shadow hash chain which can be
varied to compare the performance of these schemes. Moreover, the
performance of hash chain and shadow hash chain should be similar
as in shadow hash chain, we actually just use two hash chains: one
using regular proof and the other using encrypted proof. However,
the space requirement is higher in shadow hash chain compared to
hash chain. In hash chain, we require 128 bytes (for RSA 1024) for
the provenance entry of one proof. However in shadow hash chain,
we require (2*128 + Key Size) bytes for the provenance entry of
one proof.

5. DISCUSSION
To compare the performance of different schemes, we select the

best performing criteria of each scheme. As discussed in Section
4, we get the best performance for block hash chain with block
size 50, multi-link hash chain with link size 50, Bloom filter with
filter size 1000 byte, and RSA chaining with key size 128. As the
performance of shadow hash chain is similar to that of hash chain
scheme, we have just included hash chain in the comparison.

But when we tried to compare the required time for all three
operations (insertion, sequential verification, and sparse verifica-
tion) by all the schemes, we found that the gap between the re-

quired time by the best and worst scheme is too big to be appro-
priately represented in graphs. Since RSA chaining requires the
highest time for each of the three operations, we chose the re-
quired time of RSA chaining as 100% and represented the time
required by other schemes as a percentage of the time required by
RSA chaining. For better visualization, we represented the data as
the Log10(Percentage of Time) in Figure 5. However, for sequen-
tial verification and sparse verification, the time required by other
schemes is too small compared to that of RSA chaining and thus re-
sulting in negative values as shown in Figure 5b and 5c. For sparse
verification, we have randomly picked two proofs, which are apart
by a distance of 136. According to four square database [12], on
an average each user traverses 136 locations in one year. Hence,
for duration of one year, average distance between the source and
destination proof can be safely assumed to be 136.

Figure 5a presents the comparison of provenance entry gener-
ation time for one location proof by different schemes. We ob-
serve that for provenance generation, multi-link hash chain pro-
vides the best performance. Hash-chain and block hash chain pro-
vides nearly the similar performance compared to multi-link. Fig-
ure 5b compares the time to sequentially verify a provenance chain
containing 136 entries. For both sequential and sparse verification,
block hash chain scheme provides the best performance as shown
in Figure 5b and Figure 5c. Considering all the three operations,
we can say that block hash chain scheme performs better than all
other schemes and RSA chain requires the highest time for all the
cases.

However, computational performance is not always the selection
criteria for choosing a provenance scheme. RSA chain complies
with maximum number of criteria as mentioned in Table 1. On the
other hand, block hash chain does not comply with any privacy re-
quirement. Hence, for sensitive applications, where users’ privacy
is critical, we can employ the RSA chain scheme, which gives a
reasonable performance with highest privacy protection.

6. RELATED WORK
All location tracking and reporting mechanisms require a reli-

able and tamper proof architecture to preserve the integrity of the
location data. Traditional Global Positioning Systems (GPS) [10]
are effective in general purpose location reporting. However, it is
not a suitable option in terms of security and indoor tracking. Re-
cent papers have proposed a combination of GPS signals with other
mechanisms, such as, cellular tower triangulations and identifica-
tion of the access network channel. Gabber et al. [11] utilized
multi-channel information to verify the location. They used the
Caller-ID feature, GPS, cellular telephony, and satellite ranging,
in a combined approach to determine the movement and location
of user devices. Unfortunately, malicious entities can bypass such
combinatorial schemes [18, 22]. Additionally, GPS signatures [9]
are not useful since they are open to spoofing attacks [18]. Se-
cure and unforgeable location proof was discussed by Waters et
al. [28], which introduced the idea of collecting location proofs
from a location manager. A secure geo-tagging service has been
proposed by Lenders et al. [17], which allowed the verification of
the location and timestamp for user-generated content. Zhu et al.
proposed APPLAUS, a collusion resistant location proof updating
system [30]. The collusion resistance is ensured using betweenness
ranking-based and correlation clustering-based approaches. Wang
et al. proposed STAMP, a similar approach for providing spatial-
temporal provenance assurance for mobile users [27]. But none
of these schemes consider preserving secure location provenance.
Without secure location history, discrete location proofs cannot be
used in real-life scenario.
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Figure 5: Comparison among Different Schemes

However, provenance has been explored in diverse areas of com-
puter science. Provenance has been proposed for file system [21],
database system [4, 6, 29], grid and distributed system [8, 24, 25].
Hasan et al. first introduced secure data provenance [14] and later
they proposed a solution to ensure secure data provenance [15].
However, these schemes do not provide solution for secure loca-
tion provenance.

Ananthanarayanan et al. discussed a framework for collecting
and storing sequence of user locations [1]. In their StarTrack sys-
tem, sequence of a user’s location and time entries are stored in
tracks which can later be shared, compared, clustered, and queried.
While tracks are similar to location provenance chains, security is-
sues are not considered here making tracks vulnerable to attacks
by malicious users. Zugenmaier et al. introduced the notion of
location stamps [31] for cell phones. The stamps provide proof
about the location of the user at a certain time. Based on this idea,
Gonzalez-Tablas et al. developed the notion of Path-stamps [13],
where the location history of the user is considered. Here, a se-
quence of location stamps, i.e., location proofs, is combined by
creating a hash chain. The Path-stamps protocol requires each user
to possess a specialized hardware that is used to authenticate the
user. This requirement makes the system difficult and expensive to
deploy. Path-stamps protocol does not support publication of par-
tial path. Therefore, users must reveal their entire path to auditors
even when they are proving a subset of their path. In contrast, some
of our proposed schemes allow users to have privacy by enabling
them to prove any arbitrary subset of their location history. Finally,

Interaction-based missed connection services have been described
by Manweiler et al. [20]. Here, two mutual strangers can use the
SMILE protocol to establish shared knowledge, which can later be
used to prove that they have met before. However, none of these
works define the criteria for secure location provenance scheme or
measure the performance based on the required characteristics. In
our work, we provide a complete guideline for generating secure lo-
cation provenance, analyzed the performance of current schemes,
and discuss their applicability.

7. CONCLUSION
As location based services become popular, collecting and se-

curely maintaining location provenance also becomes very impor-
tant. Secure generation of location proofs and their applications
have the promise to revolutionize many domains, such as, in sup-
ply chains and digital forensics. In this paper, we presented OTIT,
a model for formalizing the characteristics of location provenance
under a single domain and map the current models based on these
formal propositions. Simulated results give a clear idea about the
performance of different schemes created using our model. We
believe that our proposed framework can serve as a benchmark-
ing tool for designing any secure location proof generation scheme.
Currently we are working on building further schemes and a generic
framework for secure and automated provenance generation. Our
future work includes designing an off-the-shelf model for creat-
ing secure location provenance under a domain specific language
driven definition of any arbitrary location proof generation scheme.
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